結果
問題 | No.2074 Product is Square ? |
ユーザー | chineristAC |
提出日時 | 2022-09-14 12:42:38 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 466 ms / 2,000 ms |
コード長 | 2,932 bytes |
コンパイル時間 | 153 ms |
コンパイル使用メモリ | 82,164 KB |
実行使用メモリ | 71,680 KB |
最終ジャッジ日時 | 2024-05-08 17:56:20 |
合計ジャッジ時間 | 9,498 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 49 ms
56,320 KB |
testcase_01 | AC | 65 ms
68,480 KB |
testcase_02 | AC | 67 ms
68,480 KB |
testcase_03 | AC | 66 ms
68,096 KB |
testcase_04 | AC | 66 ms
68,352 KB |
testcase_05 | AC | 70 ms
68,508 KB |
testcase_06 | AC | 64 ms
67,328 KB |
testcase_07 | AC | 65 ms
67,584 KB |
testcase_08 | AC | 66 ms
67,456 KB |
testcase_09 | AC | 64 ms
67,712 KB |
testcase_10 | AC | 65 ms
67,712 KB |
testcase_11 | AC | 317 ms
69,632 KB |
testcase_12 | AC | 289 ms
69,504 KB |
testcase_13 | AC | 466 ms
70,784 KB |
testcase_14 | AC | 317 ms
69,504 KB |
testcase_15 | AC | 315 ms
69,248 KB |
testcase_16 | AC | 295 ms
69,504 KB |
testcase_17 | AC | 466 ms
70,912 KB |
testcase_18 | AC | 321 ms
69,504 KB |
testcase_19 | AC | 314 ms
69,248 KB |
testcase_20 | AC | 292 ms
69,120 KB |
testcase_21 | AC | 465 ms
70,528 KB |
testcase_22 | AC | 321 ms
69,376 KB |
testcase_23 | AC | 317 ms
69,376 KB |
testcase_24 | AC | 293 ms
69,376 KB |
testcase_25 | AC | 464 ms
70,144 KB |
testcase_26 | AC | 318 ms
69,376 KB |
testcase_27 | AC | 318 ms
69,504 KB |
testcase_28 | AC | 293 ms
69,376 KB |
testcase_29 | AC | 463 ms
69,120 KB |
testcase_30 | AC | 322 ms
69,248 KB |
testcase_31 | AC | 54 ms
62,976 KB |
testcase_32 | AC | 48 ms
56,576 KB |
testcase_33 | AC | 72 ms
71,680 KB |
ソースコード
import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return 1 for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def isqrt(a): ok = 0 ng = 10**9+1 while ng-ok>1: mid = (ok+ng)//2 if mid*mid <= a: ok = mid else: ng = mid return ok def solve(N,_A): A = _A.copy() for i in range(N): for j in range(i+1,N): g = gcd(A[i],A[j]) A[i] //= g A[j] //= g for a in A: if isqrt(a)**2 !=a: return False return True def big_int(N,A): p = 1 for a in A: p *= a ok = 0 ng = 10**(18*N) + 1 while ng-ok>1: mid = (ok+ng)//2 if mid*mid <= p: ok = mid else: ng = mid return ok*ok == p for _ in range(int(input())): N = int(input()) A = li() print("Yes" if solve(N,A) else "No")