結果

問題 No.1451 集団登校
ユーザー maspymaspy
提出日時 2022-09-16 03:16:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 71 ms / 2,000 ms
コード長 30,356 bytes
コンパイル時間 4,688 ms
コンパイル使用メモリ 272,996 KB
実行使用メモリ 30,936 KB
最終ジャッジ日時 2024-05-10 01:27:05
合計ジャッジ時間 6,772 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 32 ms
16,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 28 ms
14,316 KB
testcase_11 AC 17 ms
12,920 KB
testcase_12 AC 27 ms
13,480 KB
testcase_13 AC 51 ms
18,472 KB
testcase_14 AC 69 ms
30,128 KB
testcase_15 AC 26 ms
12,696 KB
testcase_16 AC 39 ms
17,132 KB
testcase_17 AC 41 ms
30,860 KB
testcase_18 AC 16 ms
8,692 KB
testcase_19 AC 10 ms
8,936 KB
testcase_20 AC 71 ms
30,936 KB
testcase_21 AC 28 ms
21,816 KB
testcase_22 AC 15 ms
11,020 KB
testcase_23 AC 8 ms
7,808 KB
testcase_24 AC 25 ms
13,872 KB
testcase_25 AC 25 ms
13,340 KB
testcase_26 AC 38 ms
16,732 KB
testcase_27 AC 52 ms
29,320 KB
testcase_28 AC 16 ms
10,984 KB
testcase_29 AC 28 ms
14,948 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

ll SUM(vector<int> &A) {
  ll sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

template <typename T>
T SUM(vector<T> &A) {
  T sum = T(0);
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  assert(que.size());
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

ll binary_search(function<bool(ll)> check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    if (check(x))
      ok = x;
    else
      ng = x;
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    if (check(x)) {
      ok = x;
    } else {
      ng = x;
    }
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vi s_to_vi(const string &S, char first_char) {
  vi A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T>
vector<T> cumsum(vector<T> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

template <typename T>
vector<int> argsort(const vector<T> &A) {
  // stable
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "/home/maspy/compro/library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail

template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <class T, is_modint_t<T> * = nullptr>
  bool read_single(T &ref) {
    long long val = 0;
    bool f = read_single(val);
    ref = T(val);
    return f;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <class A, class B, class C>
  bool read_single(tuple<A, B, C> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)));
  }
  template <class A, class B, class C, class D>
  bool read_single(tuple<A, B, C, D> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)) && read_single(get<3>(p)));
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <class T, is_modint_t<T> * = nullptr>
  void write(T &ref) {
    write(ref.val);
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <class A, class B, class C>
  void write(const tuple<A, B, C> &val) {
    auto &[a, b, c] = val;
    write(a), write(' '), write(b), write(' '), write(c);
  }
  template <class A, class B, class C, class D>
  void write(const tuple<A, B, C, D> &val) {
    auto &[a, b, c, d] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
  }
  template <class A, class B, class C, class D, class E>
  void write(const tuple<A, B, C, D, E> &val) {
    auto &[a, b, c, d, e] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
  }
  template <class A, class B, class C, class D, class E, class F>
  void write(const tuple<A, B, C, D, E, F> &val) {
    auto &[a, b, c, d, e, f] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if(val < 0){
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if(negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)      \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void resize(int n) { N = n; }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void read_parent(int off = 1) {
    for (int v = 1; v < N; ++v) {
      INT(p);
      p -= off;
      add(p, v);
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "/home/maspy/compro/library/ds/unionfind.hpp"

struct UnionFind {
  int n;
  int n_comp;
  std::vector<int> size, par;
  UnionFind(int n) : n(n), n_comp(n), size(n, 1), par(n) {
    std::iota(par.begin(), par.end(), 0);
  }
  int find(int x) {
    assert(0 <= x && x < n);
    while (par[x] != x) {
      par[x] = par[par[x]];
      x = par[x];
    }
    return x;
  }

  int operator[](int x) { return find(x); }

  bool merge(int x, int y) {
    x = find(x);
    y = find(y);
    if (x == y) { return false; }
    n_comp--;
    if (size[x] < size[y]) std::swap(x, y);
    size[x] += size[y];
    size[y] = 0;
    par[y] = x;
    return true;
  }

  std::vector<int> find_all() {
    std::vector<int> A(n);
    for (int i = 0; i < n; ++i) A[i] = find(i);
    return A;
  }

  void reset() {
    n_comp = n;
    size.assign(n, 1);
    std::iota(par.begin(), par.end(), 0);
  }
};
#line 3 "/home/maspy/compro/library/graph/tree_of_unionfind.hpp"

/*
マージ過程を表す木を構築する
q 回目にマージしてできる成分:N+q
add_root = true の場合:最後に全部をマージして、根 N+Q を追加する
*/
template <typename P>
Graph<int> tree_of_unionfind(int N, vc<P> query, bool add_root) {
  UnionFind uf(N + len(query));
  vc<int> root(N);
  iota(all(root), 0);
  int Q = len(query);
  Graph<int> G(N + Q + add_root);
  FOR(q, Q) {
    int v = N + q;
    auto [a, b] = query[q];
    a = uf[a], b = uf[b];
    G.add(v, root[a]);
    if (b != a) G.add(v, root[b]);
    uf.merge(a, b);
    uf.merge(b, v);
    root[uf[v]] = v;
  }
  if (add_root) {
    int r = N + Q;
    FOR(v, N) if (uf[v] == v) G.add(r, root[v]);
  }
  G.build();
  return G;
}
#line 3 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename Graph>
struct TREE {
  Graph &G;
  using Graph_type = Graph;
  using WT = typename Graph::cost_type;
  int N;
  bool hld;
  vector<int> LID, RID, head, V, parent, root;
  vc<int> depth;
  vc<WT> depth_weighted;
  vector<bool> in_tree;

  TREE(Graph &G, int r = -1, bool hld = 1)
      : G(G),
        N(G.N),
        hld(hld),
        LID(G.N),
        RID(G.N),
        head(G.N, r),
        V(G.N),
        parent(G.N, -1),
        root(G.N, -1),
        depth(G.N, -1),
        depth_weighted(G.N, 0),
        in_tree(G.M, 0) {
    assert(G.is_prepared());
    int t1 = 0;
    if (r != -1) {
      dfs_sz(r, -1);
      dfs_hld(r, t1);
    } else {
      for (int r = 0; r < N; ++r) {
        if (parent[r] == -1) {
          head[r] = r;
          dfs_sz(r, -1);
          dfs_hld(r, t1);
        }
      }
    }
    for (auto &&v: V) root[v] = (parent[v] == -1 ? v : root[parent[v]]);
  }

  void dfs_sz(int v, int p) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      in_tree[e.id] = 1;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      dfs_sz(e.to, v);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (!in_tree[e.id] || depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int lca(int u, int v) { return LCA(u, v); }
  int la(int u, int v) { return LA(u, v); }

  int subtree_size(int v) { return RID[v] - LID[v]; }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist(int a, int b, bool weighted) {
    assert(weighted);
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - 2 * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, int k = 1) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  void debug() {
    print("V", V);
    print("LID", LID);
    print("RID", RID);
    print("parent", parent);
    print("depth", depth);
    print("head", head);
    print("in_tree(edge)", in_tree);
    print("root", root);
  }
};
#line 2 "/home/maspy/compro/library/mod/modint.hpp"

template <unsigned int mod>
struct modint {
  static constexpr bool is_modint = true;
  unsigned int val;
  constexpr modint(const long long val = 0) noexcept
      : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (unsigned int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(get_mod() - val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(int64_t n) const {
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr unsigned int get_mod() { return mod; }
};

struct ArbitraryModInt {
  static constexpr bool is_modint = true;
  unsigned int val;
  ArbitraryModInt() : val(0) {}
  ArbitraryModInt(int64_t y)
      : val(y >= 0 ? y % get_mod()
                   : (get_mod() - (-y) % get_mod()) % get_mod()) {}
  bool operator<(const ArbitraryModInt &other) const {
    return val < other.val;
  } // To use std::map<ArbitraryModInt, T>
  static unsigned int &get_mod() {
    static unsigned int mod = 0;
    return mod;
  }
  static void set_mod(int md) { get_mod() = md; }
  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if ((val += p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    unsigned long long a = (unsigned long long)val * p.val;
    unsigned xh = (unsigned)(a >> 32), xl = (unsigned)a, d, m;
    asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
    val = m;
    return *this;
  }
  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
  ArbitraryModInt operator+(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) += p;
  }
  ArbitraryModInt operator-(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) -= p;
  }
  ArbitraryModInt operator*(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) *= p;
  }
  ArbitraryModInt operator/(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) /= p;
  }
  bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
  bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
  ArbitraryModInt inverse() const {
    int a = val, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }
  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    auto q = (mod + k - 1) / k;
    int r = k * q - mod;
    dat.emplace_back(dat[r] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n);
  if (n >= mod) return 0;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * mint(k));
  }
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n && n < mod);
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * inv<mint>(k));
  }
  return dat[n];
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;

  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };

  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) { x *= mint(n - i); }
  x *= fact_inv<mint>(k);
  return x;
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 6 "main.cpp"

using mint = modint107;

void solve() {
  LL(N, M);
  using P = pair<int, int>;
  VEC(P, AB, M);
  for (auto&& [a, b]: AB) --a, --b;
  auto G = tree_of_unionfind(N, AB, true);
  TREE<decltype(G)> tree(G, N + M);

  vc<mint> ANS(N);
  vi SZ(N + M + 1);
  FOR(v, N) SZ[v] = 1;
  auto V = tree.V;
  FOR_R(i, len(V)) {
    int v = V[i];
    int p = tree.parent[v];
    if (p != -1) SZ[p] += SZ[v];
  }

  auto dfs = [&](auto& dfs, int v, mint p) -> void {
    if (v < N) {
      ANS[v] = p;
      return;
    }

    auto ch = tree.collect_child(v);
    if (len(ch) == 1) return dfs(dfs, ch[0], p);
    int a = ch[0], b = ch[1];
    if (SZ[a] == SZ[b]) {
      dfs(dfs, a, p * inv<mint>(2));
      dfs(dfs, b, p * inv<mint>(2));
    }
    if (SZ[a] > SZ[b]) { dfs(dfs, a, p); }
    if (SZ[a] < SZ[b]) { dfs(dfs, b, p); }
  };

  for (auto&& e: G[N + M]) dfs(dfs, e.to, mint(1));
  for (auto&& x: ANS) print(x);
}

signed main() {
  cout << fixed << setprecision(15);

  ll T = 1;
  // LL(T);
  FOR(T) solve();

  return 0;
}
0