結果
問題 | No.2075 GCD Subsequence |
ユーザー |
|
提出日時 | 2022-09-16 21:47:24 |
言語 | PyPy3 (7.3.8) |
結果 |
AC
|
実行時間 | 3,386 ms / 4,000 ms |
コード長 | 2,300 bytes |
コンパイル時間 | 267 ms |
使用メモリ | 119,128 KB |
最終ジャッジ日時 | 2023-01-11 06:31:36 |
合計ジャッジ時間 | 49,858 ms |
ジャッジサーバーID (参考情報) |
judge13 / judge14 |
テストケース
テストケース表示入力 | 結果 | 実行時間 使用メモリ |
---|---|---|
testcase_00 | AC | 70 ms
83,368 KB |
testcase_01 | AC | 72 ms
83,716 KB |
testcase_02 | AC | 71 ms
83,596 KB |
testcase_03 | AC | 73 ms
83,732 KB |
testcase_04 | AC | 73 ms
83,520 KB |
testcase_05 | AC | 72 ms
83,828 KB |
testcase_06 | AC | 75 ms
83,716 KB |
testcase_07 | AC | 76 ms
83,548 KB |
testcase_08 | AC | 1,116 ms
108,176 KB |
testcase_09 | AC | 1,640 ms
119,128 KB |
testcase_10 | AC | 1,107 ms
107,308 KB |
testcase_11 | AC | 1,438 ms
112,384 KB |
testcase_12 | AC | 1,297 ms
110,300 KB |
testcase_13 | AC | 940 ms
102,892 KB |
testcase_14 | AC | 1,409 ms
112,984 KB |
testcase_15 | AC | 997 ms
105,404 KB |
testcase_16 | AC | 1,089 ms
107,528 KB |
testcase_17 | AC | 1,710 ms
119,000 KB |
testcase_18 | AC | 3,314 ms
117,776 KB |
testcase_19 | AC | 3,031 ms
117,820 KB |
testcase_20 | AC | 3,119 ms
117,812 KB |
testcase_21 | AC | 2,961 ms
117,800 KB |
testcase_22 | AC | 2,965 ms
117,824 KB |
testcase_23 | AC | 3,031 ms
117,592 KB |
testcase_24 | AC | 3,039 ms
117,812 KB |
testcase_25 | AC | 3,337 ms
117,768 KB |
testcase_26 | AC | 3,386 ms
117,548 KB |
testcase_27 | AC | 3,086 ms
117,736 KB |
testcase_28 | AC | 3,108 ms
117,744 KB |
testcase_29 | AC | 71 ms
83,636 KB |
testcase_30 | AC | 71 ms
83,596 KB |
ソースコード
from math import gcd def isprime(n): if n <= 1: return False elif n == 2: return True elif n % 2 == 0: return False A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022] s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in A: if a % n == 0: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def pollard(n): if n % 2 == 0: return 2 if isprime(n): return n f = lambda x:(x * x + 1) % n step = 0 while 1: step += 1 x = step y = f(x) while 1: p = gcd(y - x + n, n) if p == 0 or p == n: break if p != 1: return p x = f(x) y = f(f(y)) def primefact(n): if n == 1: return [] p = pollard(n) if p == n: return [p] left = primefact(p) right = primefact(n // p) left += right return sorted(left) def popcount(n): n = (n & 0x5555555555555555) + ((n >> 1) & 0x5555555555555555) n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333) n = (n & 0x0f0f0f0f0f0f0f0f) + ((n >> 4) & 0x0f0f0f0f0f0f0f0f) n = (n & 0x00ff00ff00ff00ff) + ((n >> 8) & 0x00ff00ff00ff00ff) n = (n & 0x0000ffff0000ffff) + ((n >> 16) & 0x0000ffff0000ffff) n = (n & 0x00000000ffffffff) + ((n >> 32) & 0x00000000ffffffff) return n MOD = 998244353 n = int(input()) A = list(map(int, input().split())) ans = 0 dp = [0] * (10 ** 6 + 1) for a in A: lst = list(set(primefact(a))) l = len(lst) tot = 1 for bit in range(1, 1 << l): prod = 1 pm = -1 for i in range(l): if bit >> i & 1: prod *= lst[i] tot += dp[prod] tot %= MOD ans += tot ans %= MOD for bit in range(1, 1 << l): prod = 1 pm = -1 for i in range(l): if bit >> i & 1: pm *= -1 prod *= lst[i] dp[prod] += pm * tot dp[prod] %= MOD print(ans % MOD)