結果
問題 | No.2074 Product is Square ? |
ユーザー |
![]() |
提出日時 | 2022-09-16 21:53:21 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 149 ms / 2,000 ms |
コード長 | 10,318 bytes |
コンパイル時間 | 2,107 ms |
コンパイル使用メモリ | 211,932 KB |
最終ジャッジ日時 | 2025-02-07 09:22:35 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 33 |
ソースコード
#define LOCAL#include <bits/stdc++.h>using namespace std;#pragma region Macrostypedef long long ll;typedef __int128_t i128;typedef unsigned int uint;typedef unsigned long long ull;#define ALL(x) (x).begin(), (x).end()template <typename T> istream& operator>>(istream& is, vector<T>& v) {for (T& x : v) is >> x;return is;}template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {for (size_t i = 0; i < v.size(); i++) {os << v[i] << (i + 1 == v.size() ? "" : " ");}return os;}template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {os << '(' << p.first << ',' << p.second << ')';return os;}template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {os << '{';for (auto itr = m.begin(); itr != m.end();) {os << '(' << itr->first << ',' << itr->second << ')';if (++itr != m.end()) os << ',';}os << '}';return os;}template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {os << '{';for (auto itr = m.begin(); itr != m.end();) {os << '(' << itr->first << ',' << itr->second << ')';if (++itr != m.end()) os << ',';}os << '}';return os;}template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {os << '{';for (auto itr = s.begin(); itr != s.end();) {os << *itr;if (++itr != s.end()) os << ',';}os << '}';return os;}template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {os << '{';for (auto itr = s.begin(); itr != s.end();) {os << *itr;if (++itr != s.end()) os << ',';}os << '}';return os;}template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {os << '{';for (auto itr = s.begin(); itr != s.end();) {os << *itr;if (++itr != s.end()) os << ',';}os << '}';return os;}template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {for (size_t i = 0; i < v.size(); i++) {os << v[i] << (i + 1 == v.size() ? "" : " ");}return os;}template <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {for (size_t i = 0; i < N; i++) {os << v[i] << (i + 1 == N ? "" : " ");}return os;}template <int i, typename T> void print_tuple(ostream&, const T&) {}template <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {if (i) os << ',';os << get<i>(t);print_tuple<i + 1, T, Args...>(os, t);}template <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {os << '{';print_tuple<0, tuple<Args...>, Args...>(os, t);return os << '}';}void debug_out() { cerr << '\n'; }template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {cerr << head;if (sizeof...(Tail) > 0) cerr << ", ";debug_out(move(tail)...);}#ifdef LOCAL#define debug(...) \cerr << " "; \cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \cerr << " "; \debug_out(__VA_ARGS__)#else#define debug(...) void(0)#endiftemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }int popcount(signed t) { return __builtin_popcount(t); }int popcount(long long t) { return __builtin_popcountll(t); }bool ispow2(int i) { return i && (i & -i) == i; }long long MSK(int n) { return (1LL << n) - 1; }template <class T> T ceil(T x, T y) {assert(y >= 1);return (x > 0 ? (x + y - 1) / y : x / y);}template <class T> T floor(T x, T y) {assert(y >= 1);return (x > 0 ? x / y : (x - y + 1) / y);}template <class T1, class T2> inline bool chmin(T1& a, T2 b) {if (a > b) {a = b;return true;}return false;}template <class T1, class T2> inline bool chmax(T1& a, T2 b) {if (a < b) {a = b;return true;}return false;}template <typename T> void mkuni(vector<T>& v) {sort(v.begin(), v.end());v.erase(unique(v.begin(), v.end()), v.end());}template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }#pragma endregionnamespace fast_factorize {using u64 = uint64_t;mt19937_64 mt(random_device{}());u64 rng(u64 n) { return uniform_int_distribution<u64>(0, n - 1)(mt); }struct montgomery64 {using i64 = int64_t;using u64 = uint64_t;using u128 = __uint128_t;static u64 mod, r, n2;static u64 get_r() {u64 res = mod;for (int _ = 0; _ < 5; _++) res *= 2 - mod * res;return -res;}static void set_mod(u64 m) {assert(m < (1ULL << 62));assert((m & 1) == 1);mod = m;n2 = -u128(m) % m;r = get_r();assert(r * mod == -1ULL);}static u64 get_mod() { return mod; }static u64 reduce(const u128& x) noexcept { return (x + u128(u64(x) * r) * mod) >> 64; }u64 v;montgomery64() : v(0) {}montgomery64(const i64& v) : v(reduce((u128(v) + mod) * n2)) {}u64 value() const {u64 res = reduce(v);return res >= mod ? res - mod : res;}montgomery64& operator+=(const montgomery64& rhs) {if (i64(v += rhs.v - (mod << 1)) < 0) v += mod << 1;return *this;}montgomery64& operator-=(const montgomery64& rhs) {if (i64(v -= rhs.v) < 0) v += mod << 1;return *this;}montgomery64& operator*=(const montgomery64& rhs) {v = reduce(u128(v) * rhs.v);return *this;}montgomery64 operator+(const montgomery64& rhs) const { return montgomery64(*this) += rhs; }montgomery64 operator-(const montgomery64& rhs) const { return montgomery64(*this) -= rhs; }montgomery64 operator*(const montgomery64& rhs) const { return montgomery64(*this) *= rhs; }bool operator==(const montgomery64& rhs) const {return (v >= mod ? v - mod : v) == (rhs.v >= mod ? rhs.v - mod : rhs.v);}bool operator!=(const montgomery64& rhs) const {return (v >= mod ? v - mod : v) != (rhs.v >= mod ? rhs.v - mod : rhs.v);}montgomery64 pow(u64 n) const {montgomery64 self(*this), res(1);while (n > 0) {if (n & 1) res *= self;self *= self;n >>= 1;}return res;}friend istream& operator>>(istream& s, montgomery64& rhs) {i64 v;rhs = montgomery64{(s >> v, v)};return s;}friend ostream& operator<<(ostream& s, const montgomery64& rhs) { return s << rhs.v; }};typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;bool miller_rabin(const u64& n, const vector<u64>& as) {if (montgomery64::get_mod() != n) montgomery64::set_mod(n);const u64 d = (n - 1) >> __builtin_ctzll(n - 1);const montgomery64 one(1), minus_one(n - 1);for (u64 a : as) {if (n <= a) break;u64 t = d;montgomery64 y = montgomery64(a).pow(t);while (t != n - 1 && y != one && y != minus_one) {y *= y;t <<= 1;}if (y != minus_one && t % 2 == 0) return false;}return true;}bool is_prime(const u64& n) {if (n == 2 || n == 3 || n == 5 || n == 7) return true;if (n % 2 == 0 || n % 3 == 0 || n % 5 == 0 || n % 7 == 0) return false;if (n < 121) return n > 1;if (n < (1ULL << 32)) return miller_rabin(n, {2, 7, 61});return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}u64 pollard_rho(const u64& n) {if (~n & 1) return 2;if (is_prime(n)) return n;if (montgomery64::get_mod() != n) montgomery64::set_mod(n);montgomery64 R, one(1);auto f = [&](const montgomery64& x) { return x * x + R; };constexpr int m = 128;while (1) {montgomery64 x, y, ys, q = one;R = rng(n - 2) + 2, y = rng(n - 2) + 2;u64 g = 1;for (int r = 1; g == 1; r <<= 1) {x = y;for (int i = 0; i < r; i++) y = f(y);for (int k = 0; g == 1 && k < r; k += m) {ys = y;for (int i = 0; i < min(m, r - k); i++) q *= x - (y = f(y));g = gcd(q.value(), n);}}if (g == n) {do g = gcd((x - (ys = f(ys))).value(), n);while (g == 1);}if (g != n) return g;}cerr << "failed" << '\n';assert(false);return -1;}vector<u64> inner_factorize(u64 n) {if (n <= 1) return {};u64 p = pollard_rho(n);if (p == n) return {p};auto l = inner_factorize(p);auto r = inner_factorize(n / p);copy(r.begin(), r.end(), back_inserter(l));return l;}vector<u64> factorize(u64 n) {auto res = inner_factorize(n);sort(res.begin(), res.end());return res;}} // namespace fast_factorizeconst int INF = 1e9;const long long IINF = 1e18;const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};const char dir[4] = {'D', 'R', 'U', 'L'};const long long MOD = 1000000007;// const long long MOD = 998244353;void solve() {int N;cin >> N;map<ll, int> mp;for (; N--;) {ll A;cin >> A;auto res = fast_factorize::factorize(A);for (auto& x : res) mp[x]++;}for (auto p : mp) {if (p.second & 1) {cout << "No" << '\n';return;}}cout << "Yes" << '\n';}int main() {cin.tie(0);ios::sync_with_stdio(false);int T;cin >> T;for (; T--;) solve();return 0;}