結果
問題 | No.2074 Product is Square ? |
ユーザー | dn6049949 |
提出日時 | 2022-09-16 21:56:23 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,866 bytes |
コンパイル時間 | 217 ms |
コンパイル使用メモリ | 82,788 KB |
実行使用メモリ | 79,744 KB |
最終ジャッジ日時 | 2024-12-21 19:47:12 |
合計ジャッジ時間 | 33,729 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
56,204 KB |
testcase_01 | AC | 848 ms
78,748 KB |
testcase_02 | AC | 785 ms
77,976 KB |
testcase_03 | AC | 800 ms
78,180 KB |
testcase_04 | AC | 792 ms
78,484 KB |
testcase_05 | AC | 832 ms
78,104 KB |
testcase_06 | AC | 823 ms
78,280 KB |
testcase_07 | AC | 827 ms
78,416 KB |
testcase_08 | AC | 811 ms
78,552 KB |
testcase_09 | AC | 780 ms
78,080 KB |
testcase_10 | AC | 787 ms
77,824 KB |
testcase_11 | AC | 416 ms
77,312 KB |
testcase_12 | AC | 893 ms
79,744 KB |
testcase_13 | TLE | - |
testcase_14 | AC | 650 ms
78,336 KB |
testcase_15 | AC | 405 ms
77,056 KB |
testcase_16 | AC | 880 ms
79,104 KB |
testcase_17 | TLE | - |
testcase_18 | AC | 682 ms
79,744 KB |
testcase_19 | AC | 400 ms
77,184 KB |
testcase_20 | AC | 874 ms
79,104 KB |
testcase_21 | TLE | - |
testcase_22 | AC | 648 ms
79,488 KB |
testcase_23 | AC | 398 ms
77,568 KB |
testcase_24 | AC | 954 ms
79,488 KB |
testcase_25 | TLE | - |
testcase_26 | AC | 658 ms
79,104 KB |
testcase_27 | AC | 410 ms
77,312 KB |
testcase_28 | AC | 958 ms
79,616 KB |
testcase_29 | TLE | - |
testcase_30 | AC | 683 ms
78,896 KB |
testcase_31 | AC | 126 ms
76,544 KB |
testcase_32 | AC | 48 ms
61,056 KB |
testcase_33 | AC | 81 ms
77,144 KB |
ソースコード
from collections import defaultdict, deque from heapq import heappush, heappop from itertools import permutations, accumulate import sys import math import bisect def LI(): return [int(x) for x in sys.stdin.readline().split()] def I(): return int(sys.stdin.readline()) def IR(n): return [I() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] sys.setrecursionlimit(1000000) mod = 1000000007 def gcd(a, b): while a: a, b = b%a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n%2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb if n < 4759123141: test_numbers = [2, 7, 61] elif n < 341550071728321: test_numbers = [2, 3, 5, 7, 11, 13, 17] elif n < 3825123056546413051: test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23] else: test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in test_numbers: if a == n: continue x = pow(a,d,n) r = 0 if x == 1: continue while x != m: x = pow(x,2,n) if x == 1 or r == s: return 0 r += 1 return 1 def find_prime_factor(n): m = 2*int(2**(((n.bit_length()-1)>>2)/2)) for c in range(1,n): f = lambda a: (pow(a,2,n)+c)%n y = 0 g = q = r = 1 while g == 1: x = y for _ in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y)%n g = gcd(q,n) k += m r <<= 1 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y),n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: n = g def factorize(n): res = {} for p in range(2,10000): if p*p > n: break if n%p: continue s = 0 while n%p == 0: n //= p s += 1 res[p] = s while not is_prime(n) and n > 1: p = find_prime_factor(n) s = 0 while n%p == 0: n //= p s += 1 res[p] = s if n > 1: res[n] = 1 return res def main(): n = I() a = LI() s = defaultdict(lambda : 0) for i in a: f = factorize(i) for i,j in f.items(): s[i] ^= j&1 if all(si == 0 for si in s.values()): print("Yes") else: print("No") return if __name__ == "__main__": for _ in range(I()): main()