結果
問題 | No.2074 Product is Square ? |
ユーザー | tokusakurai |
提出日時 | 2022-09-16 22:04:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 152 ms / 2,000 ms |
コード長 | 9,574 bytes |
コンパイル時間 | 2,500 ms |
コンパイル使用メモリ | 222,380 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-01 13:03:37 |
合計ジャッジ時間 | 5,042 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 35 ms
6,944 KB |
testcase_02 | AC | 35 ms
6,940 KB |
testcase_03 | AC | 36 ms
6,940 KB |
testcase_04 | AC | 37 ms
6,940 KB |
testcase_05 | AC | 35 ms
6,944 KB |
testcase_06 | AC | 37 ms
6,940 KB |
testcase_07 | AC | 36 ms
6,944 KB |
testcase_08 | AC | 35 ms
6,944 KB |
testcase_09 | AC | 34 ms
6,940 KB |
testcase_10 | AC | 35 ms
6,944 KB |
testcase_11 | AC | 13 ms
6,944 KB |
testcase_12 | AC | 36 ms
6,944 KB |
testcase_13 | AC | 149 ms
6,944 KB |
testcase_14 | AC | 25 ms
6,944 KB |
testcase_15 | AC | 12 ms
6,940 KB |
testcase_16 | AC | 38 ms
6,944 KB |
testcase_17 | AC | 152 ms
6,944 KB |
testcase_18 | AC | 26 ms
6,940 KB |
testcase_19 | AC | 12 ms
6,940 KB |
testcase_20 | AC | 38 ms
6,944 KB |
testcase_21 | AC | 145 ms
6,940 KB |
testcase_22 | AC | 23 ms
6,940 KB |
testcase_23 | AC | 12 ms
6,940 KB |
testcase_24 | AC | 37 ms
6,940 KB |
testcase_25 | AC | 147 ms
6,944 KB |
testcase_26 | AC | 26 ms
6,940 KB |
testcase_27 | AC | 13 ms
6,944 KB |
testcase_28 | AC | 41 ms
6,940 KB |
testcase_29 | AC | 149 ms
6,944 KB |
testcase_30 | AC | 25 ms
6,944 KB |
testcase_31 | AC | 6 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 3 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; struct Random_Number_Generator { mt19937_64 mt; Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {} int64_t operator()(int64_t l, int64_t r) { uniform_int_distribution<int64_t> dist(l, r - 1); return dist(mt); } int64_t operator()(int64_t r) { return (*this)(0, r); } } rng; struct Montgomery_Mod_Int_64 { using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; // m*r ≡ 1 (mod 2^64) static u64 n2; // 2^128 (mod mod) u64 x; Montgomery_Mod_Int_64() : x(0) {} Montgomery_Mod_Int_64(long long b) : x(reduce((u128(b) + mod) * n2)) {} static u64 get_r() { // mod 2^64 での逆元 u64 ret = mod; for (int i = 0; i < 5; i++) ret *= 2 - mod * ret; return ret; } static u64 get_mod() { return mod; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } Montgomery_Mod_Int_64 &operator+=(const Montgomery_Mod_Int_64 &p) { if ((x += p.x) >= 2 * mod) x -= 2 * mod; return *this; } Montgomery_Mod_Int_64 &operator-=(const Montgomery_Mod_Int_64 &p) { if ((x += 2 * mod - p.x) >= 2 * mod) x -= 2 * mod; return *this; } Montgomery_Mod_Int_64 &operator*=(const Montgomery_Mod_Int_64 &p) { x = reduce(u128(x) * p.x); return *this; } Montgomery_Mod_Int_64 &operator/=(const Montgomery_Mod_Int_64 &p) { *this *= p.inverse(); return *this; } Montgomery_Mod_Int_64 &operator++() { return *this += Montgomery_Mod_Int_64(1); } Montgomery_Mod_Int_64 operator++(int) { Montgomery_Mod_Int_64 tmp = *this; ++*this; return tmp; } Montgomery_Mod_Int_64 &operator--() { return *this -= Montgomery_Mod_Int_64(1); } Montgomery_Mod_Int_64 operator--(int) { Montgomery_Mod_Int_64 tmp = *this; --*this; return tmp; } Montgomery_Mod_Int_64 operator+(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) += p; }; Montgomery_Mod_Int_64 operator-(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) -= p; }; Montgomery_Mod_Int_64 operator*(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) *= p; }; Montgomery_Mod_Int_64 operator/(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) /= p; }; bool operator==(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }; bool operator!=(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }; Montgomery_Mod_Int_64 inverse() const { assert(*this != Montgomery_Mod_Int_64(0)); return pow(mod - 2); } Montgomery_Mod_Int_64 pow(long long k) const { Montgomery_Mod_Int_64 now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } u64 get() const { u64 ret = reduce(x); return ret >= mod ? ret - mod : ret; } friend ostream &operator<<(ostream &os, const Montgomery_Mod_Int_64 &p) { return os << p.get(); } friend istream &operator>>(istream &is, Montgomery_Mod_Int_64 &p) { long long a; is >> a; p = Montgomery_Mod_Int_64(a); return is; } }; typename Montgomery_Mod_Int_64::u64 Montgomery_Mod_Int_64::mod, Montgomery_Mod_Int_64::r, Montgomery_Mod_Int_64::n2; bool Miller_Rabin(unsigned long long n, vector<unsigned long long> as) { using Mint = Montgomery_Mod_Int_64; if (Mint::get_mod() != n) Mint::set_mod(n); unsigned long long d = n - 1; while (!(d & 1)) d >>= 1; Mint e = 1, rev = n - 1; for (unsigned long long a : as) { if (n <= a) break; unsigned long long t = d; Mint y = Mint(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t <<= 1; } if (y != rev && (!(t & 1))) return false; } return true; } bool is_prime(unsigned long long n) { if (!(n & 1)) return n == 2; if (n <= 1) return false; if (n < (1LL << 30)) return Miller_Rabin(n, {2, 7, 61}); return Miller_Rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } unsigned long long Pollard_rho(unsigned long long n) { using Mint = Montgomery_Mod_Int_64; if (!(n & 1)) return 2; if (is_prime(n)) return n; if (Mint::get_mod() != n) Mint::set_mod(n); Mint R, one = 1; auto f = [&](Mint x) { return x * x + R; }; auto rnd = [&]() { return rng(n - 2) + 2; }; while (true) { Mint x, y, ys, q = one; R = rnd(), y = rnd(); unsigned long long g = 1; int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; i++) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; i++) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) { do { g = gcd((x - (ys = f(ys))).get(), n); } while (g == 1); } if (g != n) return g; } return 0; } vector<unsigned long long> factorize(unsigned long long n) { if (n <= 1) return {}; unsigned long long p = Pollard_rho(n); if (p == n) return {n}; auto l = factorize(p); auto r = factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<pair<unsigned long long, int>> prime_factor(unsigned long long n) { auto ps = factorize(n); sort(begin(ps), end(ps)); vector<pair<unsigned long long, int>> ret; for (auto &e : ps) { if (!ret.empty() && ret.back().first == e) { ret.back().second++; } else { ret.emplace_back(e, 1); } } return ret; } using ull = unsigned long long; int main() { int T; cin >> T; while (T--) { int N; cin >> N; vector<ull> a(N); rep(i, N) cin >> a[i]; map<ull, int> mp; rep(i, N) { auto ps = prime_factor(a[i]); each(e, ps) mp[e.first] += e.second; } bool flag = true; each(e, mp) { if (e.second & 1) flag = false; } cout << (flag ? "Yes\n" : "No\n"); } }