結果

問題 No.2074 Product is Square ?
ユーザー taiga0629kyopro
提出日時 2022-09-16 22:06:59
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,576 bytes
コンパイル時間 334 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 155,776 KB
最終ジャッジ日時 2024-12-21 20:53:57
合計ジャッジ時間 32,571 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28 TLE * 5
権限があれば一括ダウンロードができます

ソースコード

diff #


# https://old.yosupo.jp/submission/90839
from random import randrange

def gcd(a, b):
    while a:
        a, b = b%a, a
    return b


def is_prime(n):
    if n == 2:
        return 1
    if n == 1 or n%2 == 0:
        return 0

    m = n - 1
    lsb = m & -m
    s = lsb.bit_length()-1
    d = m // lsb
    if n < 4759123141:
        test_numbers = [2, 7, 61]
    elif n < 341550071728321:
        test_numbers = [2, 3, 5, 7, 11, 13, 17]
    elif n < 3825123056546413051:
        test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23]
    else:
        test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

    for a in test_numbers:
        if a == n:
            continue
        x = pow(a,d,n)
        r = 0
        if x == 1:
            continue
        while x != m:
            x = pow(x,2,n)
            r += 1
            if x == 1 or r == s:
                return 0
    return 1



def find_prime_factor(n):
    m = max(1,int(n**0.125))

    while True:
        c = randrange(n)
        y = k = 0
        g = q = r = 1
        while g == 1:
            x = y
            mr = 3*r//4
            while k < mr:
                y = (pow(y,2,n)+c)%n
                k += 1
            while k < r and g == 1:
                ys = y
                for _ in range(min(m, r-k)):
                    y = (pow(y,2,n)+c)%n
                    q = q*abs(x-y)%n
                g = gcd(q,n)
                k += m
            k = r
            r <<= 1
        if g == n:
            g = 1
            y = ys
            while g == 1:
                y = (pow(y,2,n)+c)%n
                g = gcd(abs(x-y),n)
        if g == n:
            continue
        if is_prime(g):
            return g
        elif is_prime(n//g):
            return n//g
        else:
            return find_prime_factor(g)


def factorize(n):
    res = {}
    for p in range(2,1000):
        if p*p > n:
            break
        if n%p:
            continue
        s = 0
        while n%p == 0:
            n //= p
            s += 1
        res[p] = s

    while not is_prime(n) and n > 1:
        p = find_prime_factor(n)
        s = 0
        while n%p == 0:
            n //= p
            s += 1
        res[p] = s
    if n > 1:
        res[n] = 1
    return res


T=int(input())
from collections import defaultdict
for iii in range(T):
    n=int(input())
    a=list(map(int,input().split()))
    ans=defaultdict(int)
    for x in a:
        pri=factorize(x)
        for p in pri:ans[p]+=pri[p]
    flag=1
    for p in ans:
        if ans[p]%2==1:flag=0
    print("Yes" if flag else "No")
0