結果
問題 | No.2075 GCD Subsequence |
ユーザー |
|
提出日時 | 2022-09-16 22:11:52 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,334 ms / 4,000 ms |
コード長 | 7,358 bytes |
コンパイル時間 | 2,489 ms |
コンパイル使用メモリ | 205,944 KB |
最終ジャッジ日時 | 2025-02-07 09:45:03 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 28 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < (n); i++)#define per(i, n) for (int i = (n)-1; i >= 0; i--)#define rep2(i, l, r) for (int i = (l); i < (r); i++)#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>using minheap = priority_queue<T, vector<T>, greater<T>>;template <typename T>using maxheap = priority_queue<T>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;const int inf = (1 << 30) - 1;const ll INF = (1LL << 60) - 1;// const int MOD = 1000000007;const int MOD = 998244353;template <int mod>struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int &operator+=(const Mod_Int &p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int &operator-=(const Mod_Int &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int &operator*=(const Mod_Int &p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int &operator/=(const Mod_Int &p) {*this *= p.inverse();return *this;}Mod_Int &operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int &operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int &p) const { return x == p.x; }bool operator!=(const Mod_Int &p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }friend istream &operator>>(istream &is, Mod_Int &p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};using mint = Mod_Int<MOD>;template <typename T>vector<T> divisors(const T &n) {vector<T> ret;for (T i = 1; i * i <= n; i++) {if (n % i == 0) {ret.push_back(i);if (i * i != n) ret.push_back(n / i);}}sort(begin(ret), end(ret));return ret;}template <typename T>vector<pair<T, int>> prime_factor(T n) {vector<pair<T, int>> ret;for (T i = 2; i * i <= n; i++) {int cnt = 0;while (n % i == 0) cnt++, n /= i;if (cnt > 0) ret.emplace_back(i, cnt);}if (n > 1) ret.emplace_back(n, 1);return ret;}template <typename T>bool is_prime(const T &n) {if (n == 1) return false;for (T i = 2; i * i <= n; i++) {if (n % i == 0) return false;}return true;}// 1,2,...,n のうち k と互いに素である自然数の個数template <typename T>T coprime(T n, T k) {vector<pair<T, int>> ps = prime_factor(k);int m = ps.size();T ret = 0;for (int i = 0; i < (1 << m); i++) {T prd = 1;for (int j = 0; j < m; j++) {if ((i >> j) & 1) prd *= ps[j].first;}ret += (__builtin_parity(i) ? -1 : 1) * (n / prd);}return ret;}vector<bool> Eratosthenes(const int &n) {vector<bool> ret(n + 1, true);if (n >= 0) ret[0] = false;if (n >= 1) ret[1] = false;for (int i = 2; i * i <= n; i++) {if (!ret[i]) continue;for (int j = i + i; j <= n; j += i) ret[j] = false;}return ret;}vector<int> Eratosthenes2(const int &n) {vector<int> ret(n + 1);iota(begin(ret), end(ret), 0);if (n >= 0) ret[0] = -1;if (n >= 1) ret[1] = -1;for (int i = 2; i * i <= n; i++) {if (ret[i] < i) continue;for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i);}return ret;}int main() {int N;cin >> N;vector<int> a(N);rep(i, N) cin >> a[i];int MAX = 1000000;vector<mint> dp(MAX + 1, 0);auto ps = Eratosthenes2(MAX);vector<int> c(MAX + 1, 0);c[1] = -1;rep2(i, 2, MAX + 1) {int p = ps[i];if (ps[i / p] == p) {c[i] = 0;} else {c[i] = -c[i / p];}}c[1] = 0;rep(i, N) {auto ds = divisors(a[i]);mint tmp = 1;each(e, ds) tmp += dp[e] * c[e];each(e, ds) dp[e] += tmp;}cout << dp[1] << '\n';}