結果

問題 No.2074 Product is Square ?
ユーザー siganaisiganai
提出日時 2022-09-16 22:15:31
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 9,026 bytes
コンパイル時間 2,453 ms
コンパイル使用メモリ 215,004 KB
実行使用メモリ 13,756 KB
最終ジャッジ日時 2024-06-01 13:21:11
合計ジャッジ時間 14,824 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,756 KB
testcase_01 AC 811 ms
6,944 KB
testcase_02 AC 765 ms
6,944 KB
testcase_03 AC 801 ms
6,940 KB
testcase_04 AC 765 ms
6,940 KB
testcase_05 AC 836 ms
6,940 KB
testcase_06 AC 818 ms
6,944 KB
testcase_07 AC 836 ms
6,944 KB
testcase_08 AC 750 ms
6,940 KB
testcase_09 AC 719 ms
6,940 KB
testcase_10 AC 763 ms
6,944 KB
testcase_11 AC 69 ms
6,940 KB
testcase_12 AC 693 ms
6,944 KB
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#ifdef LOCAL
#  include <debug.hpp>
#  define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#  define debug(...) (static_cast<void>(0))
#endif
//#include "atcoder/convolution.hpp"
//#include "atcoder/modint.hpp"
using namespace std;
//using namespace atcoder;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define elif else if
#define vec(type,name,...) vector<type> name(__VA_ARGS__)
#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
    in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
    ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr int mod = 1000000007;
//constexpr int mod = 998244353;
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

namespace FastPrimeFactorization {
  template< typename word, typename dword, typename sword >
  struct UnsafeMod {
    UnsafeMod() : x(0) {}

    UnsafeMod(word _x) : x(init(_x)) {}

    bool operator==(const UnsafeMod &rhs) const {
      return x == rhs.x;
    }

    bool operator!=(const UnsafeMod &rhs) const {
      return x != rhs.x;
    }

    UnsafeMod &operator+=(const UnsafeMod &rhs) {
      if((x += rhs.x) >= mod) x -= mod;
      return *this;
    }

    UnsafeMod &operator-=(const UnsafeMod &rhs) {
      if(sword(x -= rhs.x) < 0) x += mod;
      return *this;
    }

    UnsafeMod &operator*=(const UnsafeMod &rhs) {
      x = reduce(dword(x) * rhs.x);
      return *this;
    }

    UnsafeMod operator+(const UnsafeMod &rhs) const {
      return UnsafeMod(*this) += rhs;
    }

    UnsafeMod operator-(const UnsafeMod &rhs) const {
      return UnsafeMod(*this) -= rhs;
    }

    UnsafeMod operator*(const UnsafeMod &rhs) const {
      return UnsafeMod(*this) *= rhs;
    }

    UnsafeMod pow(uint64_t e) const {
      UnsafeMod ret(1);
      for(UnsafeMod base = *this; e; e >>= 1, base *= base) {
        if(e & 1) ret *= base;
      }
      return ret;
    }

    word get() const {
      return reduce(x);
    }

    static constexpr int word_bits = sizeof(word) * 8;

    static word modulus() {
      return mod;
    }

    static word init(word w) {
      return reduce(dword(w) * r2);
    }

    static void set_mod(word m) {
      mod = m;
      inv = mul_inv(mod);
      r2 = -dword(mod) % mod;
    }

    static word reduce(dword x) {
      word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
      return sword(y) < 0 ? y + mod : y;
    }

    static word mul_inv(word n, int e = 6, word x = 1) {
      return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
    }

    static word mod, inv, r2;

    word x;
  };

  using uint128_t = __uint128_t;

  using Mod64 = UnsafeMod< uint64_t, uint128_t, int64_t >;
  template<> uint64_t Mod64::mod = 0;
  template<> uint64_t Mod64::inv = 0;
  template<> uint64_t Mod64::r2 = 0;

  using Mod32 = UnsafeMod< uint32_t, uint64_t, int32_t >;
  template<> uint32_t Mod32::mod = 0;
  template<> uint32_t Mod32::inv = 0;
  template<> uint32_t Mod32::r2 = 0;

  bool miller_rabin_primality_test_uint64(uint64_t n) {
    Mod64::set_mod(n);
    uint64_t d = n - 1;
    while(d % 2 == 0) d /= 2;
    Mod64 e{1}, rev{n - 1};
    // http://miller-rabin.appspot.com/  < 2^64
    for(uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
      if(n <= a) break;
      uint64_t t = d;
      Mod64 y = Mod64(a).pow(t);
      while(t != n - 1 && y != e && y != rev) {
        y *= y;
        t *= 2;
      }
      if(y != rev && t % 2 == 0) return false;
    }
    return true;
  }

  bool miller_rabin_primality_test_uint32(uint32_t n) {
    Mod32::set_mod(n);
    uint32_t d = n - 1;
    while(d % 2 == 0) d /= 2;
    Mod32 e{1}, rev{n - 1};
    for(uint32_t a : {2, 7, 61}) {
      if(n <= a) break;
      uint32_t t = d;
      Mod32 y = Mod32(a).pow(t);
      while(t != n - 1 && y != e && y != rev) {
        y *= y;
        t *= 2;
      }
      if(y != rev && t % 2 == 0) return false;
    }
    return true;
  }

  bool is_prime(uint64_t n) {
    if(n == 2) return true;
    if(n == 1 || n % 2 == 0) return false;
    if(n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n);
    return miller_rabin_primality_test_uint64(n);
  }

  uint64_t pollard_rho(uint64_t n) {
    if(is_prime(n)) return n;
    if(n % 2 == 0) return 2;
    Mod64::set_mod(n);
    uint64_t d;
    Mod64 one{1};
    for(Mod64 c{one};; c += one) {
      Mod64 x{2}, y{2};
      do {
        x = x * x + c;
        y = y * y + c;
        y = y * y + c;
        d = __gcd((x - y).get(), n);
      } while(d == 1);
      if(d < n) return d;
    }
    assert(0);
  }

  vector< uint64_t > prime_factor(uint64_t n) {
    if(n <= 1) return {};
    uint64_t p = pollard_rho(n);
    if(p == n) return {p};
    auto l = prime_factor(p);
    auto r = prime_factor(n / p);
    copy(begin(r), end(r), back_inserter(l));
    return l;
  }
};


int main() {
    INT(tt);
    while(tt--) {
        INT(n);
        VEC(ll,a,n);
        vl v;
        rep(i,n) {
            auto ret = FastPrimeFactorization::prime_factor(a[i]);
            for(auto &p:ret) {
                v.emplace_back(p);
            }
        }
        sort(all(v));
        int flg = 1;
        int l = 0;
        rep(i,1,v.size()) {
            if(v[i] != v[i-1]) {
                if((i - l) % 2) {
                    flg = 0;
                    break;
                }
                else l = i;
            }
        }
        if((v.size()-l) % 2) flg = 0;
        cout << (flg ? "Yes":"No") << '\n';
    }
}
0