結果

問題 No.2074 Product is Square ?
ユーザー ecotteaecottea
提出日時 2022-09-16 22:36:39
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 15,186 bytes
コンパイル時間 4,419 ms
コンパイル使用メモリ 247,968 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-21 21:53:21
合計ジャッジ時間 27,593 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28 TLE * 5
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// Visual Studio
#ifdef _MSC_VER
#include "local.hpp"
// gcc
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif //
//--------------AtCoder --------------
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------
// F_p 64 bit
/*
* F_p
*
* : p gcc
*/
#ifdef _MSC_VER
#define __int128 ll //
#endif
struct mll {
__int128 v;
static __int128 MOD;
//
mll() : v(0) {};
mll(const mll& a) = default;
mll(const int& a) : v(safe_mod(a)) {};
mll(const ll& a) : v(safe_mod(a)) {};
//
mll& operator=(const mll& a) { v = a.v; return *this; }
mll& operator=(const int& a) { v = safe_mod(a); return *this; }
mll& operator=(const ll& a) { v = safe_mod(a); return *this; }
//
friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; }
friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; }
// mod
template <class T> static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; }
//
bool operator==(const mll& b) const { return v == b.v; }
bool operator==(const int& b) const { return v == safe_mod(b); }
bool operator==(const ll& b) const { return v == safe_mod(b); }
friend bool operator==(const int& a, const mll& b) { return b == a; }
friend bool operator==(const ll& a, const mll& b) { return b == a; }
//
mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; }
mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; }
mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; }
mll& operator/=(const mll& b) { *this *= b.inv(); return *this; }
mll operator+(const mll& b) const { mll a = *this; return a += b; }
mll operator-(const mll& b) const { mll a = *this; return a -= b; }
mll operator*(const mll& b) const { mll a = *this; return a *= b; }
mll operator/(const mll& b) const { mll a = *this; return a /= b; }
mll operator-() const { mll a = *this; return a *= -1; }
// int
mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; }
mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; }
mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; }
mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; }
mll operator+(const int& b) const { mll a = *this; return a += b; }
mll operator-(const int& b) const { mll a = *this; return a -= b; }
mll operator*(const int& b) const { mll a = *this; return a *= b; }
mll operator/(const int& b) const { mll a = *this; return a /= b; }
friend mll operator+(const int& a, const mll& b) { return b + a; }
friend mll operator-(const int& a, const mll& b) { return -(b - a); }
friend mll operator*(const int& a, const mll& b) { return b * a; }
friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); }
// ll
mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; }
mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; }
mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; }
mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; }
mll operator+(const ll& b) const { mll a = *this; return a += b; }
mll operator-(const ll& b) const { mll a = *this; return a -= b; }
mll operator*(const ll& b) const { mll a = *this; return a *= b; }
mll operator/(const ll& b) const { mll a = *this; return a /= b; }
friend mll operator+(const ll& a, const mll& b) { return b + a; }
friend mll operator-(const ll& a, const mll& b) { return -(b - a); }
friend mll operator*(const ll& a, const mll& b) { return b * a; }
friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); }
//
mll pow(ll d) const {
mll res(1), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
//
mll inv() const { return pow(MOD - 2); }
//
static void set_mod(ll MOD_) { Assert(MOD_ > 0); MOD = MOD_; }
static ll mod() { return (ll)MOD; }
//
ll val() const { return (ll)safe_mod(v); }
};
__int128 mll::MOD;
//O((log n)^3)
/*
* n
*
* F_p 64 bit
*/
bool miller_rabin(ll n) {
// : https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html
// verify : https://algo-method.com/tasks/513
//
// p a=[1..p)
// a^(p-1) = 1 (mod p)
//
// p - 1 = 2^s d d :
//
// a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p)
//
//
// a
// n a
const vl as = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
if (n == 2 || n == 3 || n == 5 || n == 13 || n == 19 || n == 73 || n == 193
|| n == 407521 || n == 299210837) return true;
if (n == 1 || n % 2 == 0) return false;
mll::set_mod(n);
int s = 0; ll d = n - 1;
while (d % 2 == 0) {
s++;
d /= 2;
}
repe(a, as) {
mll powa = mll(a).pow(d);
if (powa == 1 || powa == -1) goto LOOP_END;
rep(r, s - 1) {
powa *= powa;
if (powa == 1) return false;
if (powa == -1) goto LOOP_END;
}
return false;
LOOP_END:;
}
return true;
}
//O(n^(1/4))
/*
* n 1
*
* : n
*
* F_p 64 bit
*/
ll pollard_rho(ll n) {
// : https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98
// verify : https://algo-method.com/tasks/553
//
// c f : Z/nZ → Z/nZ
// f(x) = x^2 + c
//
//
// x[0] = y[0] (= 2) Z/nZ
// x[i + 1] = f(x[i]), y[i + 1] = f(f(y[i]))
//
// gcd(x[i] - y[i], n) = g ∈ [2..n-1]
// f Z/gZg n
//
//
// x r = (2 ) 1/2
// gcd m = n^(1/8) gcd log
//
if (!(n & 1)) return 2;
int m = 1 << (msb(n) / 8);
mll::set_mod(n); // n 使
const int c_max = 99; // c
repi(c, 1, c_max) {
auto f = [&](mll x) { return x * x + c; };
mll x, y = 2, y_bak;
ll g = 1;
int r = 1;
// g = 1
while (g == 1) {
// x, y r = 2^i
x = y;
rep(hoge, r) y = f(y);
// r = 2^i
for (int k = 0; k < r; k += m) {
// g = n
y_bak = y;
// m
mll mul = 1;
rep(i, min(m, r - k)) {
y = f(y);
// gcd
// x
//
mul *= x - y;
}
g = gcd(mul.val(), n);
// g != 1
if (g != 1) goto LOOP_END;
}
r *= 2;
}
LOOP_END:;
// g = n
if (g == n) {
// x, y_bak
g = 1;
while (g == 1) {
y_bak = f(y_bak);
g = gcd((x - y_bak).val(), n);
}
}
// g < n g n
if (g < n) return g;
// g = n
// f c
}
// c
return n;
}
//O(n^(1/4))
/*
* n pps
* pps[p] = d : n p d
*
* ,
*/
void factor_integer(ll n, map<ll, int>& pps) {
// verify : https://algo-method.com/tasks/553
pps.clear();
if (n == 1) return;
//
queue<ll> divs;
divs.push(n);
while (!divs.empty()) {
ll d = divs.front();
divs.pop();
//
if (miller_rabin(d)) {
pps[d]++;
}
// 2
else {
ll d1 = pollard_rho(d);
ll d2 = d / d1;
divs.push(d1);
divs.push(d2);
}
}
}
//Zobrist Hash
/*
* S ⊂ X
*
* Zobrist_hash_set<X>() : O(1)
* S
*
* flip(X x) : O(1)
* S x
*
* ll get() : O(1)
* S
*/
template <class X> struct Zobrist_hash_set {
// verify : https://www.codechef.com/problems/COOK82D
//
ll v;
// x ∈ X
unordered_map<X, ll> x_to_hash;
//
mt19937_64 mt;
uniform_int_distribution<ll> rnd;
//
Zobrist_hash_set() : v(0) {
mt.seed((int)time(NULL));
rnd = uniform_int_distribution<ll>(-INFL, INFL);
}
// S x
void flip(const X& x) {
// x
if (!x_to_hash.count(x)) {
x_to_hash[x] = rnd(mt);
}
//
v ^= x_to_hash[x];
}
// f
ll get() { return v; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Zobrist_hash_set z) {
os << "v: " << z.v << endl;
return os;
}
#endif
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int t;
cin >> t;
rep(hoge, t) {
int n;
cin >> n;
vl a(n);
cin >> a;
Zobrist_hash_set<ll> zh;
rep(i, n) {
map<ll, int> pps;
factor_integer(a[i], pps);
repe(pp, pps) {
if (pp.second % 2 == 0) continue;
zh.flip(pp.first);
}
}
Yes(zh.get() == 0);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0