結果
問題 | No.2073 Concon Substrings (Swap Version) |
ユーザー | McGregorsh |
提出日時 | 2022-09-16 23:03:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,638 ms / 2,000 ms |
コード長 | 16,668 bytes |
コンパイル時間 | 239 ms |
コンパイル使用メモリ | 82,704 KB |
実行使用メモリ | 268,336 KB |
最終ジャッジ日時 | 2024-06-01 13:58:41 |
合計ジャッジ時間 | 31,704 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 160 ms
90,956 KB |
testcase_01 | AC | 163 ms
91,128 KB |
testcase_02 | AC | 162 ms
91,292 KB |
testcase_03 | AC | 158 ms
91,224 KB |
testcase_04 | AC | 159 ms
91,260 KB |
testcase_05 | AC | 1,635 ms
264,256 KB |
testcase_06 | AC | 1,560 ms
266,412 KB |
testcase_07 | AC | 158 ms
91,240 KB |
testcase_08 | AC | 1,078 ms
204,476 KB |
testcase_09 | AC | 1,222 ms
259,332 KB |
testcase_10 | AC | 1,524 ms
265,184 KB |
testcase_11 | AC | 1,638 ms
264,308 KB |
testcase_12 | AC | 159 ms
91,000 KB |
testcase_13 | AC | 466 ms
98,756 KB |
testcase_14 | AC | 1,303 ms
244,880 KB |
testcase_15 | AC | 638 ms
114,948 KB |
testcase_16 | AC | 1,177 ms
268,336 KB |
testcase_17 | AC | 160 ms
90,828 KB |
testcase_18 | AC | 257 ms
94,056 KB |
testcase_19 | AC | 1,140 ms
266,160 KB |
testcase_20 | AC | 809 ms
220,236 KB |
testcase_21 | AC | 675 ms
177,716 KB |
testcase_22 | AC | 1,155 ms
268,332 KB |
testcase_23 | AC | 157 ms
91,088 KB |
testcase_24 | AC | 211 ms
93,044 KB |
testcase_25 | AC | 727 ms
192,916 KB |
testcase_26 | AC | 1,174 ms
268,064 KB |
testcase_27 | AC | 155 ms
90,960 KB |
testcase_28 | AC | 960 ms
261,256 KB |
testcase_29 | AC | 368 ms
108,928 KB |
testcase_30 | AC | 1,076 ms
216,920 KB |
testcase_31 | AC | 611 ms
127,636 KB |
testcase_32 | AC | 429 ms
99,488 KB |
testcase_33 | AC | 461 ms
105,464 KB |
testcase_34 | AC | 471 ms
102,180 KB |
testcase_35 | AC | 829 ms
169,656 KB |
testcase_36 | AC | 524 ms
107,328 KB |
testcase_37 | AC | 785 ms
156,676 KB |
testcase_38 | AC | 464 ms
102,560 KB |
testcase_39 | AC | 943 ms
182,460 KB |
testcase_40 | AC | 806 ms
165,268 KB |
testcase_41 | AC | 877 ms
178,808 KB |
ソースコード
###順序付き多重集合### import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ###セグメントツリー### #####segfunc##### def segfunc(x, y): return x + y # 最小値 min(x, y) # 最大値 max(x, y) # 区間和 x + y # 区間積 x * y # 最大公約数 math.gcd(x, y) # 排他的論理和 x ^ y ################# #####ide_ele##### ide_ele = 0 # 最小値 float('inf') # 最大値 -float('inf') # 区間和 0 # 区間積 1 # 最大公約数 0 # 排他的論理和 0 ################# class SegTree: """ init(init_val, ide_ele): 配列init_valで初期化 O(N) update(k, x): k番目の値をxに更新 O(logN) query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN) """ def __init__(self, init_val, segfunc, ide_ele): """ init_val: 配列の初期値 segfunc: 区間にしたい操作 ide_ele: 単位元 n: 要素数 num: n以上の最小の2のべき乗 tree: セグメント木(1-index) """ n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num # 配列の値を葉にセット for i in range(n): self.tree[self.num + i] = init_val[i] # 構築していく for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): """ k番目の値をxに更新 k: index(0-index) x: update value """ k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): """ [l, r)のsegfuncしたものを得る l: index(0-index) r: index(0-index) """ res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res ###UnionFind### from collections import defaultdict class UnionFind(): """ Union Find木クラス Attributes -------------------- n : int 要素数 root : list 木の要素数 0未満であればそのノードが根であり、添字の値が要素数 rank : list 木の深さ """ def __init__(self, n): """ Parameters --------------------- n : int 要素数 """ self.n = n self.root = [-1]*(n+1) self.rank = [0]*(n+1) def find(self, x): """ ノードxの根を見つける Parameters --------------------- x : int 見つけるノード Returns --------------------- root : int 根のノード """ if(self.root[x] < 0): return x else: self.root[x] = self.find(self.root[x]) return self.root[x] def unite(self, x, y): """ 木の併合 Parameters --------------------- x : int 併合したノード y : int 併合したノード """ x = self.find(x) y = self.find(y) if(x == y): return elif(self.rank[x] > self.rank[y]): self.root[x] += self.root[y] self.root[y] = x else: self.root[y] += self.root[x] self.root[x] = y if(self.rank[x] == self.rank[y]): self.rank[y] += 1 def same(self, x, y): """ 同じグループに属するか判定 Parameters --------------------- x : int 判定したノード y : int 判定したノード Returns --------------------- ans : bool 同じグループに属しているか """ return self.find(x) == self.find(y) def size(self, x): """ 木のサイズを計算 Parameters --------------------- x : int 計算したい木のノード Returns --------------------- size : int 木のサイズ """ return -self.root[self.find(x)] def roots(self): """ 根のノードを取得 Returns --------------------- roots : list 根のノード """ return [i for i, x in enumerate(self.root) if x < 0] def group_size(self): """ グループ数を取得 Returns --------------------- size : int グループ数 """ return len(self.roots()) - 1 def group_members(self): """ 全てのグループごとのノードを取得 Returns --------------------- group_members : defaultdict 根をキーとしたノードのリスト """ group_members = defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members ###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###ある数が素数かどうかの判定### def is_prime(n): if n < 2: return False i = 2 while i * i <= n: if n % i == 0: return False i += 1 return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n+1): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 10**9+7 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk import sys, re from fractions import Fraction from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 ###関数コピーしたか?### def main(): N = int(input()) S = input() S1 = SortedMultiset() S2 = SortedMultiset() S3 = SortedMultiset() for i in range(3*N): if i % 3 == 0: if S[i] == 'c': S1.add(1) elif S[i] == 'o': S1.add(2) elif S[i] == 'n': S1.add(3) else: S1.add(0) if i % 3 == 1: if S[i] == 'c': S2.add(1) elif S[i] == 'o': S2.add(2) elif S[i] == 'n': S2.add(3) else: S2.add(0) if i % 3 == 2: if S[i] == 'c': S3.add(1) elif S[i] == 'o': S3.add(2) elif S[i] == 'n': S3.add(3) else: S3.add(0) ans = 0 cou = 0 for i in range(3*N): if i % 3 == 0: if cou == 0: strs = 1 if strs in S1: cou = 1 S1.discard(1) else: cou = 0 S1.discard(0) elif cou == 1: strs = 2 if strs in S1: cou = 2 S1.discard(2) else: cou = 0 S1.discard(0) else: strs = 3 if strs in S1: cou = 3 S1.discard(3) else: cou = 0 S1.discard(0) if cou == 3: ans += 1 cou = 0 if i % 3 == 1: if cou == 0: strs = 1 if strs in S2: cou = 1 S2.discard(1) else: cou = 0 S2.discard(0) elif cou == 1: strs = 2 if strs in S2: cou = 2 S2.discard(2) else: cou = 0 S2.discard(0) else: strs = 3 if strs in S2: cou = 3 S2.discard(3) else: cou = 0 S2.discard(0) if cou == 3: ans += 1 cou = 0 if i % 3 == 2: if cou == 0: strs = 1 if strs in S3: cou = 1 S3.discard(1) else: cou = 0 S3.discard(0) elif cou == 1: strs = 2 if strs in S3: cou = 2 S3.discard(2) else: cou = 0 S3.discard(0) else: strs = 3 if strs in S3: cou = 3 S3.discard(3) else: cou = 0 S3.discard(0) if cou == 3: ans += 1 cou = 0 print(ans) if __name__ == '__main__': main()