結果
問題 | No.2073 Concon Substrings (Swap Version) |
ユーザー |
|
提出日時 | 2022-09-16 23:03:44 |
言語 | PyPy3 (7.3.8) |
結果 |
AC
|
実行時間 | 1,703 ms / 2,000 ms |
コード長 | 16,668 bytes |
コンパイル時間 | 301 ms |
使用メモリ | 272,224 KB |
最終ジャッジ日時 | 2023-01-11 08:22:06 |
合計ジャッジ時間 | 35,996 ms |
ジャッジサーバーID (参考情報) |
judge14 / judge11 |
テストケース
テストケース表示入力 | 結果 | 実行時間 使用メモリ |
---|---|---|
testcase_00 | AC | 269 ms
91,240 KB |
testcase_01 | AC | 270 ms
91,236 KB |
testcase_02 | AC | 270 ms
91,200 KB |
testcase_03 | AC | 272 ms
91,188 KB |
testcase_04 | AC | 275 ms
91,244 KB |
testcase_05 | AC | 1,638 ms
269,736 KB |
testcase_06 | AC | 1,611 ms
270,276 KB |
testcase_07 | AC | 269 ms
91,204 KB |
testcase_08 | AC | 1,157 ms
206,704 KB |
testcase_09 | AC | 1,296 ms
257,820 KB |
testcase_10 | AC | 1,587 ms
269,032 KB |
testcase_11 | AC | 1,703 ms
266,616 KB |
testcase_12 | AC | 273 ms
91,168 KB |
testcase_13 | AC | 595 ms
99,512 KB |
testcase_14 | AC | 1,368 ms
247,804 KB |
testcase_15 | AC | 766 ms
117,588 KB |
testcase_16 | AC | 1,219 ms
271,524 KB |
testcase_17 | AC | 274 ms
91,208 KB |
testcase_18 | AC | 377 ms
93,732 KB |
testcase_19 | AC | 1,188 ms
271,712 KB |
testcase_20 | AC | 898 ms
212,804 KB |
testcase_21 | AC | 759 ms
173,780 KB |
testcase_22 | AC | 1,222 ms
271,572 KB |
testcase_23 | AC | 273 ms
91,028 KB |
testcase_24 | AC | 331 ms
92,048 KB |
testcase_25 | AC | 813 ms
192,092 KB |
testcase_26 | AC | 1,201 ms
272,224 KB |
testcase_27 | AC | 268 ms
91,172 KB |
testcase_28 | AC | 997 ms
250,988 KB |
testcase_29 | AC | 472 ms
108,820 KB |
testcase_30 | AC | 1,144 ms
220,828 KB |
testcase_31 | AC | 714 ms
124,736 KB |
testcase_32 | AC | 558 ms
100,880 KB |
testcase_33 | AC | 580 ms
105,112 KB |
testcase_34 | AC | 583 ms
103,120 KB |
testcase_35 | AC | 900 ms
168,436 KB |
testcase_36 | AC | 638 ms
107,516 KB |
testcase_37 | AC | 879 ms
160,072 KB |
testcase_38 | AC | 593 ms
102,856 KB |
testcase_39 | AC | 1,020 ms
181,348 KB |
testcase_40 | AC | 885 ms
160,860 KB |
testcase_41 | AC | 970 ms
181,484 KB |
ソースコード
###順序付き多重集合### import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ###セグメントツリー### #####segfunc##### def segfunc(x, y): return x + y # 最小値 min(x, y) # 最大値 max(x, y) # 区間和 x + y # 区間積 x * y # 最大公約数 math.gcd(x, y) # 排他的論理和 x ^ y ################# #####ide_ele##### ide_ele = 0 # 最小値 float('inf') # 最大値 -float('inf') # 区間和 0 # 区間積 1 # 最大公約数 0 # 排他的論理和 0 ################# class SegTree: """ init(init_val, ide_ele): 配列init_valで初期化 O(N) update(k, x): k番目の値をxに更新 O(logN) query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN) """ def __init__(self, init_val, segfunc, ide_ele): """ init_val: 配列の初期値 segfunc: 区間にしたい操作 ide_ele: 単位元 n: 要素数 num: n以上の最小の2のべき乗 tree: セグメント木(1-index) """ n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num # 配列の値を葉にセット for i in range(n): self.tree[self.num + i] = init_val[i] # 構築していく for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): """ k番目の値をxに更新 k: index(0-index) x: update value """ k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): """ [l, r)のsegfuncしたものを得る l: index(0-index) r: index(0-index) """ res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res ###UnionFind### from collections import defaultdict class UnionFind(): """ Union Find木クラス Attributes -------------------- n : int 要素数 root : list 木の要素数 0未満であればそのノードが根であり、添字の値が要素数 rank : list 木の深さ """ def __init__(self, n): """ Parameters --------------------- n : int 要素数 """ self.n = n self.root = [-1]*(n+1) self.rank = [0]*(n+1) def find(self, x): """ ノードxの根を見つける Parameters --------------------- x : int 見つけるノード Returns --------------------- root : int 根のノード """ if(self.root[x] < 0): return x else: self.root[x] = self.find(self.root[x]) return self.root[x] def unite(self, x, y): """ 木の併合 Parameters --------------------- x : int 併合したノード y : int 併合したノード """ x = self.find(x) y = self.find(y) if(x == y): return elif(self.rank[x] > self.rank[y]): self.root[x] += self.root[y] self.root[y] = x else: self.root[y] += self.root[x] self.root[x] = y if(self.rank[x] == self.rank[y]): self.rank[y] += 1 def same(self, x, y): """ 同じグループに属するか判定 Parameters --------------------- x : int 判定したノード y : int 判定したノード Returns --------------------- ans : bool 同じグループに属しているか """ return self.find(x) == self.find(y) def size(self, x): """ 木のサイズを計算 Parameters --------------------- x : int 計算したい木のノード Returns --------------------- size : int 木のサイズ """ return -self.root[self.find(x)] def roots(self): """ 根のノードを取得 Returns --------------------- roots : list 根のノード """ return [i for i, x in enumerate(self.root) if x < 0] def group_size(self): """ グループ数を取得 Returns --------------------- size : int グループ数 """ return len(self.roots()) - 1 def group_members(self): """ 全てのグループごとのノードを取得 Returns --------------------- group_members : defaultdict 根をキーとしたノードのリスト """ group_members = defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members ###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###ある数が素数かどうかの判定### def is_prime(n): if n < 2: return False i = 2 while i * i <= n: if n % i == 0: return False i += 1 return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n+1): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 10**9+7 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk import sys, re from fractions import Fraction from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 ###関数コピーしたか?### def main(): N = int(input()) S = input() S1 = SortedMultiset() S2 = SortedMultiset() S3 = SortedMultiset() for i in range(3*N): if i % 3 == 0: if S[i] == 'c': S1.add(1) elif S[i] == 'o': S1.add(2) elif S[i] == 'n': S1.add(3) else: S1.add(0) if i % 3 == 1: if S[i] == 'c': S2.add(1) elif S[i] == 'o': S2.add(2) elif S[i] == 'n': S2.add(3) else: S2.add(0) if i % 3 == 2: if S[i] == 'c': S3.add(1) elif S[i] == 'o': S3.add(2) elif S[i] == 'n': S3.add(3) else: S3.add(0) ans = 0 cou = 0 for i in range(3*N): if i % 3 == 0: if cou == 0: strs = 1 if strs in S1: cou = 1 S1.discard(1) else: cou = 0 S1.discard(0) elif cou == 1: strs = 2 if strs in S1: cou = 2 S1.discard(2) else: cou = 0 S1.discard(0) else: strs = 3 if strs in S1: cou = 3 S1.discard(3) else: cou = 0 S1.discard(0) if cou == 3: ans += 1 cou = 0 if i % 3 == 1: if cou == 0: strs = 1 if strs in S2: cou = 1 S2.discard(1) else: cou = 0 S2.discard(0) elif cou == 1: strs = 2 if strs in S2: cou = 2 S2.discard(2) else: cou = 0 S2.discard(0) else: strs = 3 if strs in S2: cou = 3 S2.discard(3) else: cou = 0 S2.discard(0) if cou == 3: ans += 1 cou = 0 if i % 3 == 2: if cou == 0: strs = 1 if strs in S3: cou = 1 S3.discard(1) else: cou = 0 S3.discard(0) elif cou == 1: strs = 2 if strs in S3: cou = 2 S3.discard(2) else: cou = 0 S3.discard(0) else: strs = 3 if strs in S3: cou = 3 S3.discard(3) else: cou = 0 S3.discard(0) if cou == 3: ans += 1 cou = 0 print(ans) if __name__ == '__main__': main()