結果
| 問題 |
No.2084 Mex Subset For All Sequences
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-09-17 15:39:01 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 85 ms / 2,000 ms |
| コード長 | 4,494 bytes |
| コンパイル時間 | 685 ms |
| コンパイル使用メモリ | 34,176 KB |
| 実行使用メモリ | 15,616 KB |
| 最終ジャッジ日時 | 2024-12-22 01:00:28 |
| 合計ジャッジ時間 | 2,992 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include <stdio.h>
const int Mod = 998244353,
bit[21] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576},
bit_inv[21] = {1, 499122177, 748683265, 873463809, 935854081, 967049217, 982646785, 990445569, 994344961, 996294657, 997269505, 997756929, 998000641, 998122497, 998183425, 998213889, 998229121, 998236737, 998240545, 998242449, 998243401},
root[21] = {1, 998244352, 911660635, 372528824, 929031873, 452798380, 922799308, 781712469, 476477967, 166035806, 258648936, 584193783, 63912897, 350007156, 666702199, 968855178, 629671588, 24514907, 996173970, 363395222, 565042129},
root_inv[21] = {1, 998244352, 86583718, 509520358, 337190230, 87557064, 609441965, 135236158, 304459705, 685443576, 381598368, 335559352, 129292727, 358024708, 814576206, 708402881, 283043518, 3707709, 121392023, 704923114, 950391366};
int ntt_b[21][1048576], ntt_c[21][1048576], ntt_x[21][1048576], ntt_y[21][1048576];
void NTT(int k, int a[], int z[])
{
if (k == 0) {
z[0] = a[0];
return;
}
int i, d = bit[k-1], tmpp;
long long tmp;
for (i = 0; i < d; i++) {
ntt_b[k][i] = a[i*2];
ntt_c[k][i] = a[i*2+1];
}
NTT(k - 1, ntt_b[k], ntt_x[k]);
NTT(k - 1, ntt_c[k], ntt_y[k]);
for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root[k] % Mod) {
tmpp = tmp * ntt_y[k][i] % Mod;
z[i] = ntt_x[k][i] + tmpp;
if (z[i] >= Mod) z[i] -= Mod;
z[i+d] = ntt_x[k][i] - tmpp;
if (z[i+d] < 0) z[i+d] += Mod;
}
}
void NTT_reverse(int k, int z[], int a[])
{
if (k == 0) {
a[0] = z[0];
return;
}
int i, d = bit[k-1], tmpp;
long long tmp;
for (i = 0; i < d; i++) {
ntt_x[k][i] = z[i*2];
ntt_y[k][i] = z[i*2+1];
}
NTT_reverse(k - 1, ntt_x[k], ntt_b[k]);
NTT_reverse(k - 1, ntt_y[k], ntt_c[k]);
for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root_inv[k] % Mod) {
tmpp = tmp * ntt_c[k][i] % Mod;
a[i] = ntt_b[k][i] + tmpp;
if (a[i] >= Mod) a[i] -= Mod;
a[i+d] = ntt_b[k][i] - tmpp;
if (a[i+d] < 0) a[i+d] += Mod;
}
}
// Compute the product of two polynomials a[0-da] and b[0-db] using NTT in O(d * log d) time
void prod_poly_NTT(int da, int db, int a[], int b[], int c[])
{
int i, k;
static int aa[1048576], bb[1048576], cc[1048576];
for (k = 0; bit[k] <= da + db; k++);
for (i = 0; i <= da; i++) aa[i] = a[i];
for (i = da + 1; i < bit[k]; i++) aa[i] = 0;
for (i = 0; i <= db; i++) bb[i] = b[i];
for (i = db + 1; i < bit[k]; i++) bb[i] = 0;
static int x[1048576], y[1048576], z[1048576];
NTT(k, aa, x);
if (db == da) {
for (i = 0; i <= da; i++) if (a[i] != b[i]) break;
if (i <= da) NTT(k, bb, y);
else for (i = 0; i < bit[k]; i++) y[i] = x[i];
} else NTT(k, bb, y);
for (i = 0; i < bit[k]; i++) z[i] = (long long)x[i] * y[i] % Mod;
NTT_reverse(k, z, cc);
for (i = 0; i <= da + db; i++) c[i] = (long long)cc[i] * bit_inv[k] % Mod;
}
// Compute the product of two polynomials a[0-da] and b[0-db] naively in O(da * db) time
void prod_poly_naive(int da, int db, int a[], int b[], int c[])
{
int i, j;
for (i = 0; i <= da + db; i++) c[i] = 0;
for (i = 0; i <= da; i++) {
for (j = 0; j <= db; j++) {
c[i+j] += (long long)a[i] * b[j] % Mod;
if (c[i+j] >= Mod) c[i+j] -= Mod;
}
}
}
// Compute the product of two polynomials a[0-da] and b[0-db] in an appropriate way
void prod_polynomial(int da, int db, int a[], int b[], int c[])
{
const int THR = 250000;
if (THR / (da + 1) >= db + 1) prod_poly_naive(da, db, a, b, c);
else prod_poly_NTT(da, db, a, b, c);
}
long long fact[100003], fact_inv[100003];
long long div_mod(long long x, long long y, long long z)
{
if (x % y == 0) return x / y;
else return (div_mod((1 + x / y) * y - x, (z % y), y) * z + x) / y;
}
long long pow_mod(int n, long long k)
{
long long N, ans = 1;
for (N = n; k > 0; k >>= 1, N = N * N % Mod) if (k & 1) ans = ans * N % Mod;
return ans;
}
int main()
{
int N, M;
scanf("%d %d", &N, &M);
int i, d = (N <= M)? N: M;
for (i = 1, fact[0] = 1; i <= d + 1; i++) fact[i] = fact[i-1] * i % Mod;
for (i = d, fact_inv[d+1] = div_mod(1, fact[d+1], Mod); i >= 0; i--) fact_inv[i] = fact_inv[i+1] * (i + 1) % Mod;
int a[262144], b[262144], c[262144];
for (i = 0; i <= d; i++) {
if (i % 2 == 0) a[i] = pow_mod(M * 2 - i, N);
else a[i] = Mod - pow_mod(M * 2 - i, N);
a[i] = a[i] * fact_inv[i] % Mod;
b[i] = fact_inv[i];
}
prod_polynomial(d, d, a, b, c);
long long ans = 0;
for (i = 1; i <= d; i++) ans += fact[i] * c[i] % Mod;
printf("%lld\n", ans % Mod);
fflush(stdout);
return 0;
}