結果

問題 No.2068 Restricted Permutation
ユーザー 👑 p-adic
提出日時 2022-09-19 16:34:49
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 25 ms / 2,000 ms
コード長 29,737 bytes
コンパイル時間 1,990 ms
コンパイル使用メモリ 204,408 KB
最終ジャッジ日時 2025-02-07 12:32:32
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #define _GLIBCXX_DEBUG
#include<bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define CIN( LL , A ) LL A; cin >> A
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( ll VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( ll VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define MIN( A , B ) A < B ? A : B;
#define MAX( A , B ) A < B ? B : A;
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
template <typename T>
using VLArray = list<T>;
// https://github.com/p-adic/cpp
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept;
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept
{
if( M == 0 ){
return 0;
}
const INT M_abs = ( M > 0 ? M : -M );
if( n < 0 ){
const INT n_abs = -n;
const INT res = n_abs % M_abs;
return res == 0 ? res : M_abs - res;
}
return n % M_abs;
}
using INT_TYPE_FOR_ADIC_INT = long long int;
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH = 0>
class AdicInt
{
private:
VLArray<INT_TYPE_FOR_ADIC_INT> m_expansion;
INT_TYPE_FOR_ADIC_INT m_n;
public:
inline AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;
inline const VLArray<INT_TYPE_FOR_ADIC_INT>& GetExpansion() const noexcept;
inline const INT_TYPE_FOR_ADIC_INT& GetValue() const noexcept;
static const VLArray<INT_TYPE_FOR_ADIC_INT>& Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;
};
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline AdicInt<P,LENGTH>::AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept :
    m_expansion( Expand( n ) ) , m_n( n ) {}
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::GetExpansion()
    const noexcept { return m_expansion; }
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const INT_TYPE_FOR_ADIC_INT& AdicInt<P,LENGTH>::GetValue() const noexcept {
    return m_n; }
template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH>
const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept
{
static VLArray<INT_TYPE_FOR_ADIC_INT> memory_n{};
static VLArray<VLArray<INT_TYPE_FOR_ADIC_INT> > memory_answer{};
if( P == 0 ){
//
return memory_n;
}
auto itr_n = memory_n.begin() , end_n = memory_n.end();
auto itr_answer = memory_answer.begin();
while( itr_n != end_n ){
if( *itr_n == n ){
return *itr_answer;
}
itr_n++;
itr_answer++;
}
INT_TYPE_FOR_ADIC_INT n_copy = n;
VLArray<INT_TYPE_FOR_ADIC_INT> answer{};
if( LENGTH == 0 ){
for( INT_TYPE_FOR_ADIC_INT i = 0 ; n_copy != 0 ; i++ ){
const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );
answer.push_back( d );
n_copy -= d;
n_copy /= P;
}
} else {
for( INT_TYPE_FOR_ADIC_INT i = 0 ; i < LENGTH && n_copy != 0 ; i++ ){
const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );
answer.push_back( d );
n_copy -= d;
n_copy /= P;
}
}
memory_n.push_back( n );
memory_answer.push_back( answer );
return memory_answer.back();
}
// init * ( t ^ num )
template <typename T , typename UINT>
T Power( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true , const string& method = "normal" );
template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init = 1 , const bool&
    for_right_multiplication = true );
template <typename T , typename UINT>
T PowerBinaryMethod( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true );
// T
template <typename T> inline T Square( const T& t );
// PowerBinaryMetodPowerBinaryMethod<T,UINT>
template <typename T , typename UINT>
inline T Power( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication , const string& method ) { return method ==
    "binary" ? PowerBinaryMethod( t , num , init , for_right_multiplication ) : PowerNormalMethod( t , num , init , for_right_multiplication ); }
template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication
    ) { return num == 0 ? init : ( for_right_multiplication ? PowerNormalMethod( t , num - 1 , init ) * t : t * PowerNormalMethod( t , num - 1 , init
    ) ); }
template <typename T , typename UINT>
T PowerBinaryMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication )
{
const VLArray<UINT>& num_binary = AdicInt<2>::Expand( num );
T answer = init;
T power = t;
for( auto itr = num_binary.begin() , end = num_binary.end() ; itr != end ; itr++ ){
if( *itr == 1 ){
answer = for_right_multiplication ? answer * power : power * answer;
}
// Square<T>
power = Square( power );
}
return answer;
}
template <typename T> inline T Square( const T& t ) { return t * t; }
using INT_TYPE_FOR_MOD = long long int;
// tempate <typename INT , INT M>operator
    +INT_TYPE_FOR_MOD
template <INT_TYPE_FOR_MOD M>
class Mod
{
protected:
INT_TYPE_FOR_MOD m_n;
INT_TYPE_FOR_MOD m_inv;
public:
inline Mod() noexcept;
inline Mod( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod( const Mod<M>& n ) noexcept;
inline Mod<M>& operator=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator=( const Mod<M>& n ) noexcept;
Mod<M>& operator+=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator+=( const Mod<M>& n ) noexcept;
inline Mod<M>& operator-=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator-=( const Mod<M>& n ) noexcept;
Mod<M>& operator*=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator*=( const Mod<M>& n ) noexcept;
// INT_TYPE_FOR_MOD
virtual Mod<M>& operator/=( const INT_TYPE_FOR_MOD& n );
virtual Mod<M>& operator/=( const Mod<M>& n );
Mod<M>& operator%=( const INT_TYPE_FOR_MOD& n );
inline Mod<M>& operator%=( const Mod<M>& n );
inline Mod<M> operator-() const noexcept;
// ++/--使++/--
inline Mod<M>& operator++() noexcept;
inline Mod<M>& operator++( int ) noexcept;
inline Mod<M>& operator--() noexcept;
inline Mod<M>& operator--( int ) noexcept;
inline const INT_TYPE_FOR_MOD& Represent() const noexcept;
void Invert() noexcept;
bool CheckInvertible() noexcept;
bool IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
bool IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
};
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> Inverse( const Mod<M>& n );
template <INT_TYPE_FOR_MOD M> Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method );
// M1
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method );
// ../Power/a_Body.hpp
template <typename T> inline T Square( const T& t );
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t );
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept;
template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n );
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m );
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod() noexcept : m_n( 0 ) , m_inv( M ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const INT_TYPE_FOR_MOD& n ) noexcept : m_n( Residue<INT_TYPE_FOR_MOD>( M , n ) ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const Mod<M>& n ) noexcept : m_n( n.m_n ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator=( Mod<M>( n ) ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator=( const Mod<M>& n ) noexcept
{
m_n = n.m_n;
m_inv = n.m_inv;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator+=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n + n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator+=( const Mod<M>& n ) noexcept { return operator+=( n.m_n ); };
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator+=( -n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const Mod<M>& n ) noexcept { return operator-=( n.m_n ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const Mod<M>& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n.m_n );
if( m_inv == 0 || n.m_inv == 0 ){
m_inv = 0;
} else if( m_inv == M || n.m_inv == M ){
m_inv = M;
} else {
Residue<INT_TYPE_FOR_MOD>( M , m_inv * n.m_inv );
}
return *this;
}
// inline
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const INT_TYPE_FOR_MOD& n )
{
return operator/=( Mod<M>( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const Mod<M>& n )
{
return operator*=( Inverse( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator%=( const INT_TYPE_FOR_MOD& n )
{
m_n %= Residue<INT_TYPE_FOR_MOD>( M , n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator%=( const Mod<M>& n ) { return operator%=( n.m_n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Mod<M>::operator-() const noexcept { return Mod<M>( 0 ).operator-=( *this ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++() noexcept { return operator+=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++( int ) noexcept { return operator++(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--() noexcept { return operator-=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--( int ) noexcept { return operator-=(); }
template <INT_TYPE_FOR_MOD M> inline const INT_TYPE_FOR_MOD& Mod<M>::Represent() const noexcept { return m_n; }
template <INT_TYPE_FOR_MOD M>
void Mod<M>::Invert() noexcept
{
if( CheckInvertible() ){
INT_TYPE_FOR_MOD i = m_inv;
m_inv = m_n;
m_n = i;
} else {
// m_nMRepresent()
m_n = M;
m_inv = M;
}
return;
}
template <INT_TYPE_FOR_MOD M>
bool Mod<M>::CheckInvertible() noexcept
{
if( m_inv == 0 ){
LazyEvaluationOfModularInverse( M , m_n , m_inv );
}
return m_inv != M;
}
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n < Residue<INT_TYPE_FOR_MOD>(
    M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n > Residue<INT_TYPE_FOR_MOD>(
    M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 == Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 ) == n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() == n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0.IsSmallerThan( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1.IsBiggerThan( n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() < n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n += n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 + n0; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 + n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 + ( -n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 - n1.Represent()
    ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 - n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 * n0; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) { return n0 / Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) / n1; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 )
{
auto n = n0;
n /= n1;
return n;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 )
{
auto n = n0;
n %= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) % n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 ) { return n0 % n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> Inverse( const Mod<M>& n )
{
auto n_copy = n;
n_copy.Invert();
return n_copy;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method )
{
if( p >= 0 ){
return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p , 1 , true , true , method );
}
return Inverse( Power<M>( n , -p , method ) );
}
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method ) { return p == 0 ? 1 : n; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method ) { return Power<Mod<M>,INT_TYPE_FOR_MOD
    >( n , p.Represent() , method ); }
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method ) { return p == 0 ? 1 : n; }
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t ) { return t; }
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept { return to_string( n.Represent() ) + " + MZ"; }
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m )
{
static VLArray<INT_TYPE_FOR_MOD> memory_M{};
// vectorVLArrayO(1)O(n)
static VLArray<vector<INT_TYPE_FOR_MOD> > memory_inverse{};
auto itr_M = memory_M.begin() , end_M = memory_M.end();
auto itr_inverse = memory_inverse.begin();
vector<INT_TYPE_FOR_MOD>* p_inverse = nullptr;
while( itr_M != end_M && p_inverse == nullptr ){
if( *itr_M == M ){
p_inverse = &( *itr_inverse );
}
itr_M++;
itr_inverse++;
}
if( p_inverse == nullptr ){
memory_M.push_front( M );
memory_inverse.push_front( vector<INT_TYPE_FOR_MOD>() );
p_inverse = &( memory_inverse.front() );
p_inverse->push_back( M );
}
const INT_TYPE_FOR_MOD size = p_inverse->size();
for( INT_TYPE_FOR_MOD i = size ; i <= n ; i++ ){
p_inverse->push_back( 0 );
}
INT_TYPE_FOR_MOD& n_inv = ( *p_inverse )[n];
if( n_inv != 0 ){
m = n_inv;
return;
}
const INT_TYPE_FOR_MOD M_abs = M >= 0 ? M : -M;
const INT_TYPE_FOR_MOD n_sub = M_abs % n;
INT_TYPE_FOR_MOD n_sub_inv = ( *p_inverse )[n_sub];
if( n_sub_inv == 0 ){
LazyEvaluationOfModularInverse( M , n_sub , n_sub_inv );
}
if( n_sub_inv != M ){
n_inv = M_abs - ( ( n_sub_inv * ( M_abs / n ) ) % M_abs );
m = n_inv;
return;
}
for( INT_TYPE_FOR_MOD i = 1 ; i < M_abs ; i++ ){
if( ( n * i ) % M_abs == 1 ){
n_inv = i;
m = n_inv;
return;
}
}
n_inv = M;
m = n_inv;
return;
}
template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n ) {
    return os << n.Represent(); }
constexpr const ll P = 998244353;
using MOD = Mod<P>;
int main()
{
CIN( ll , N );
if( N == 1 ){
RETURN( 0 );
}
CIN( ll , K );
CIN( ll , X );
// PNi
// NPi-1iPf(P,i)
// sum_P f(P) = sum_P sum_i f(P,i) = sum_i sum_P f(P,i)
// isum_P f(P,i)
// i < K
// = sum_P (P[i]iN) * Factorial( N - i )
// = Factorial( N - i ) * sum_P (P[i]iN)
// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )
// { j * (PP[i]iNj) }
// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )
// {
// j * sum( ll Pi = j + 1 ; Pi <= i + j ; Pi++ )
// {
// ( Pi == X ? 0 : Pij)
// * ( PiN(i-1)-((Pi-1)-j))
// * (i-1) * (N-i-1)
// }
// }
// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )
// {
// j * sum( ll Pi = j + 1 ; Pi <= i + j ; Pi++ )
// {
// ( Pi == X ? 0 : Pij)
// * ( PiNN-i-j)
// * Factrial( i - 1 ) * Factorial( N - i - 1 )
// }
// }
// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 )
// * sum( ll j = 0 ; j <= N - i ) ; j++ )
// {
// j * (NN-i+1Xj+1X)
// }
// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i + 1 )
// * sum( ll j = 0 ; j <= N - i ) ; j++ )
// {
// j *
// (
// (N-1N-i)
// - (Xj) * (XNN-i-j)
// )
// }
// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *
// (
// sum( ll j = 0 ; j <= N - i ) ; j++ ){ j * Combination( N - 1 , ( N - i ) }
// - (XN-iX)
// )
// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *
// (
// Combination( N - 1 , i - 1 ) * sum( ll j = 0 ; j <= N - i ) ; j++ ) j
// - Combination( N - 1 , N - i ) * ( ( N - i ) * ( X - 1 ) / ( N - 1 ) )
// )
// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *
// (
// Combination( N - 1 , i - 1 ) * ( ( N - i ) * ( N - i + 1 ) ) / 2
// - Combination( N - 1 , N - i ) * ( ( N - i ) * ( X - 1 ) / ( N - 1 ) )
// )
// = Factorial( N - 1 ) * Factorial( N - i ) * ( ( N - i + 1 ) / 2 - ( X - 1 ) / ( N - 1 ) )
// i = K
// = sum_P (XiN) * Factorial( N - K )
// = Factorial( N - K ) * sum( ll j = 0 ; j <= N - K ) ; j++ )
// {
// j * (Xj)
// * (XN(K-1)-((X-1)-j))
// * (K-1) * (N-K)
// }
// = Factorial( N - K ) * sum( ll j = max( 0 , X - K ) ; j <= min( N - K , X - 1 ) ) ; j++ )
// {
// j * Combination( X - 1 , j ) * Combination( N - X , K + j - X )
// * Factorial( K - 1 ) * Factorial( N - K )
// }
// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K )
// * sum( ll j = max( 0 , X - K ) ; j <= min( N - K , X - 1 ) ) ; j++ )
// { j * Combination( X - 1 , j ) * Combination( N - X , N - K - j ) }
// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K - 1 )
// * (XN-KX)
// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K )
// * Combination( N - 1 , N - K ) * ( ( N - K ) * ( X - 1 ) / ( N - 1 ) )
// = Factorial( N - 1 ) * Factorial( N - K ) * ( N - K ) * ( X - 1 ) / ( N - 1 )
// i > K
// = ( Factorial( N - 1 ) / Factorial( N - 1 - ( K - 1 ) ) ) * sum( ll p = 0 ; p < Factorial( N - K ) ; p++ ) p
// = ( Factorial( N - 1 ) / Factorial( N - K ) ) * ( Factorial( N - K ) * ( Factorial( N - K ) - 1 ) ) / 2
// = Factorial( N - 1 ) * ( Factorial( N - K ) - 1 ) / 2
MOD answer{};
MOD Factorial[200001];
MOD one{ 1 };
Factorial[0] = one;
FOR( i , 1 , N ){
Factorial[i] = Factorial[i-1] * i;
}
MOD two_inverse = one / 2;
MOD rate = MOD( X - 1 ) / ( N - 1 );
ll NK = N - K;
FOR( N_minus_i , NK + 1 , N ){
answer += Factorial[N_minus_i] * ( ( N_minus_i + 1 ) * two_inverse - rate );
}
answer += Factorial[NK] * NK * rate;
answer += ( Factorial[NK] - 1 ) * two_inverse;
answer *= Factorial[N-1];
RETURN( answer );
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0