結果
問題 | No.2068 Restricted Permutation |
ユーザー |
👑 |
提出日時 | 2022-09-19 16:34:49 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 25 ms / 2,000 ms |
コード長 | 29,737 bytes |
コンパイル時間 | 1,990 ms |
コンパイル使用メモリ | 204,408 KB |
最終ジャッジ日時 | 2025-02-07 12:32:32 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
// #define _GLIBCXX_DEBUG#include<bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;#define CIN( LL , A ) LL A; cin >> A#define GETLINE( A ) string A; getline( cin , A )#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( ll VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( ll VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )#define QUIT return 0#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT#define MIN( A , B ) A < B ? A : B;#define MAX( A , B ) A < B ? B : A;template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }template <typename T>using VLArray = list<T>;// 以下、自分のライブラリ(https://github.com/p-adic/cpp)よりソースコードをコピーして編集している。template <typename INT>INT Residue( const INT& M , const INT& n ) noexcept;template <typename INT>INT Residue( const INT& M , const INT& n ) noexcept{if( M == 0 ){return 0;}const INT M_abs = ( M > 0 ? M : -M );if( n < 0 ){const INT n_abs = -n;const INT res = n_abs % M_abs;return res == 0 ? res : M_abs - res;}return n % M_abs;}using INT_TYPE_FOR_ADIC_INT = long long int;template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH = 0>class AdicInt{private:VLArray<INT_TYPE_FOR_ADIC_INT> m_expansion;INT_TYPE_FOR_ADIC_INT m_n;public:inline AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;inline const VLArray<INT_TYPE_FOR_ADIC_INT>& GetExpansion() const noexcept;inline const INT_TYPE_FOR_ADIC_INT& GetValue() const noexcept;static const VLArray<INT_TYPE_FOR_ADIC_INT>& Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept;};template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline AdicInt<P,LENGTH>::AdicInt( const INT_TYPE_FOR_ADIC_INT& n ) noexcept :m_expansion( Expand( n ) ) , m_n( n ) {}template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::GetExpansion()const noexcept { return m_expansion; }template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH> inline const INT_TYPE_FOR_ADIC_INT& AdicInt<P,LENGTH>::GetValue() const noexcept {return m_n; }template <INT_TYPE_FOR_ADIC_INT P , INT_TYPE_FOR_ADIC_INT LENGTH>const VLArray<INT_TYPE_FOR_ADIC_INT>& AdicInt<P,LENGTH>::Expand( const INT_TYPE_FOR_ADIC_INT& n ) noexcept{static VLArray<INT_TYPE_FOR_ADIC_INT> memory_n{};static VLArray<VLArray<INT_TYPE_FOR_ADIC_INT> > memory_answer{};if( P == 0 ){// ダミーreturn memory_n;}auto itr_n = memory_n.begin() , end_n = memory_n.end();auto itr_answer = memory_answer.begin();while( itr_n != end_n ){if( *itr_n == n ){return *itr_answer;}itr_n++;itr_answer++;}INT_TYPE_FOR_ADIC_INT n_copy = n;VLArray<INT_TYPE_FOR_ADIC_INT> answer{};if( LENGTH == 0 ){for( INT_TYPE_FOR_ADIC_INT i = 0 ; n_copy != 0 ; i++ ){const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );answer.push_back( d );n_copy -= d;n_copy /= P;}} else {for( INT_TYPE_FOR_ADIC_INT i = 0 ; i < LENGTH && n_copy != 0 ; i++ ){const INT_TYPE_FOR_ADIC_INT d = Residue<INT_TYPE_FOR_ADIC_INT>( P , n_copy );answer.push_back( d );n_copy -= d;n_copy /= P;}}memory_n.push_back( n );memory_answer.push_back( answer );return memory_answer.back();}// init * ( t ^ num )template <typename T , typename UINT>T Power( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true , const string& method = "normal" );template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init = 1 , const bool&for_right_multiplication = true );template <typename T , typename UINT>T PowerBinaryMethod( const T& t , const UINT& num , const T& init = 1 , const bool& for_right_multiplication = true );// 単なる2乗だが、T次第ではオーバーロードしてより高速なものに置き換えるtemplate <typename T> inline T Square( const T& t );// PowerBinaryMetodの呼び出しは部分特殊化ではなくオーバーロードで処理できるようにするためにPowerBinaryMethod<T,UINT>とはしない。template <typename T , typename UINT>inline T Power( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication , const string& method ) { return method =="binary" ? PowerBinaryMethod( t , num , init , for_right_multiplication ) : PowerNormalMethod( t , num , init , for_right_multiplication ); }template <typename T , typename UINT> inline T PowerNormalMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication) { return num == 0 ? init : ( for_right_multiplication ? PowerNormalMethod( t , num - 1 , init ) * t : t * PowerNormalMethod( t , num - 1 , init) ); }template <typename T , typename UINT>T PowerBinaryMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication ){const VLArray<UINT>& num_binary = AdicInt<2>::Expand( num );T answer = init;T power = t;for( auto itr = num_binary.begin() , end = num_binary.end() ; itr != end ; itr++ ){if( *itr == 1 ){answer = for_right_multiplication ? answer * power : power * answer;}// 部分特殊化ではなくオーバーロードで処理できるようにするためにSquare<T>としない。power = Square( power );}return answer;}template <typename T> inline T Square( const T& t ) { return t * t; }using INT_TYPE_FOR_MOD = long long int;// ここをtempate <typename INT , INT M>などにしてしまうとoperator+などを呼び出す際に型推論に失敗する。整数型を変えたい時はINT_TYPE_FOR_MODの型エイリアスを変更する。template <INT_TYPE_FOR_MOD M>class Mod{protected:INT_TYPE_FOR_MOD m_n;INT_TYPE_FOR_MOD m_inv;public:inline Mod() noexcept;inline Mod( const INT_TYPE_FOR_MOD& n ) noexcept;inline Mod( const Mod<M>& n ) noexcept;inline Mod<M>& operator=( const INT_TYPE_FOR_MOD& n ) noexcept;Mod<M>& operator=( const Mod<M>& n ) noexcept;Mod<M>& operator+=( const INT_TYPE_FOR_MOD& n ) noexcept;inline Mod<M>& operator+=( const Mod<M>& n ) noexcept;inline Mod<M>& operator-=( const INT_TYPE_FOR_MOD& n ) noexcept;inline Mod<M>& operator-=( const Mod<M>& n ) noexcept;Mod<M>& operator*=( const INT_TYPE_FOR_MOD& n ) noexcept;Mod<M>& operator*=( const Mod<M>& n ) noexcept;// INT_TYPE_FOR_MODでの割り算ではないことに注意virtual Mod<M>& operator/=( const INT_TYPE_FOR_MOD& n );virtual Mod<M>& operator/=( const Mod<M>& n );Mod<M>& operator%=( const INT_TYPE_FOR_MOD& n );inline Mod<M>& operator%=( const Mod<M>& n );inline Mod<M> operator-() const noexcept;// 前置++/--を使うつもりがないので後置++/--と同じものとして定義するinline Mod<M>& operator++() noexcept;inline Mod<M>& operator++( int ) noexcept;inline Mod<M>& operator--() noexcept;inline Mod<M>& operator--( int ) noexcept;inline const INT_TYPE_FOR_MOD& Represent() const noexcept;void Invert() noexcept;bool CheckInvertible() noexcept;bool IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;bool IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;};template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 );template <INT_TYPE_FOR_MOD M> Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 );template <INT_TYPE_FOR_MOD M> Mod<M> Inverse( const Mod<M>& n );template <INT_TYPE_FOR_MOD M> Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method = "normal" );template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method );// M乗が1になるよう定義されていることに注意template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method = "normal" );template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method );// ../Power/a_Body.hppにて定義template <typename T> inline T Square( const T& t );template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t );template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept;template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n );void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m );template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod() noexcept : m_n( 0 ) , m_inv( M ){}template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const INT_TYPE_FOR_MOD& n ) noexcept : m_n( Residue<INT_TYPE_FOR_MOD>( M , n ) ) , m_inv( 0 ){}template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const Mod<M>& n ) noexcept : m_n( n.m_n ) , m_inv( 0 ){}template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator=( Mod<M>( n ) ); }template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator=( const Mod<M>& n ) noexcept{m_n = n.m_n;m_inv = n.m_inv;return *this;}template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator+=( const INT_TYPE_FOR_MOD& n ) noexcept{m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n + n );m_inv = 0;return *this;}template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator+=( const Mod<M>& n ) noexcept { return operator+=( n.m_n ); };template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator+=( -n ); }template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const Mod<M>& n ) noexcept { return operator-=( n.m_n ); }template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator*=( const INT_TYPE_FOR_MOD& n ) noexcept{m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n );m_inv = 0;return *this;}template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator*=( const Mod<M>& n ) noexcept{m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n.m_n );if( m_inv == 0 || n.m_inv == 0 ){m_inv = 0;} else if( m_inv == M || n.m_inv == M ){m_inv = M;} else {Residue<INT_TYPE_FOR_MOD>( M , m_inv * n.m_inv );}return *this;}// 仮想関数なのでinline指定しない。template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator/=( const INT_TYPE_FOR_MOD& n ){return operator/=( Mod<M>( n ) );}template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator/=( const Mod<M>& n ){return operator*=( Inverse( n ) );}template <INT_TYPE_FOR_MOD M>Mod<M>& Mod<M>::operator%=( const INT_TYPE_FOR_MOD& n ){m_n %= Residue<INT_TYPE_FOR_MOD>( M , n );m_inv = 0;return *this;}template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator%=( const Mod<M>& n ) { return operator%=( n.m_n ); }template <INT_TYPE_FOR_MOD M> inline Mod<M> Mod<M>::operator-() const noexcept { return Mod<M>( 0 ).operator-=( *this ); }template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++() noexcept { return operator+=( 1 ); }template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++( int ) noexcept { return operator++(); }template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--() noexcept { return operator-=( 1 ); }template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--( int ) noexcept { return operator-=(); }template <INT_TYPE_FOR_MOD M> inline const INT_TYPE_FOR_MOD& Mod<M>::Represent() const noexcept { return m_n; }template <INT_TYPE_FOR_MOD M>void Mod<M>::Invert() noexcept{if( CheckInvertible() ){INT_TYPE_FOR_MOD i = m_inv;m_inv = m_n;m_n = i;} else {// m_nがMになるのはここの処理に限るのでRepresent()の値を参照することで例外処理可能m_n = M;m_inv = M;}return;}template <INT_TYPE_FOR_MOD M>bool Mod<M>::CheckInvertible() noexcept{if( m_inv == 0 ){LazyEvaluationOfModularInverse( M , m_n , m_inv );}return m_inv != M;}template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n < Residue<INT_TYPE_FOR_MOD>(M , n ); }template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n > Residue<INT_TYPE_FOR_MOD>(M , n ); }template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 == Mod<M>( n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 ) == n0; }template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() == n1.Represent(); }template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 == n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0.IsSmallerThan( n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1.IsBiggerThan( n0 ); }template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() < n1.Represent(); }template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n1 < n0 ); }template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n1 < n0; }template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 < n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }template <INT_TYPE_FOR_MOD M>Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept{auto n = n0;n += n1;return n;}template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 + n0; }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 + n1.Represent(); }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 + ( -n1 ); }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 - n1.Represent()); }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 - n1.Represent(); }template <INT_TYPE_FOR_MOD M>Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept{auto n = n0;n *= n1;return n;}template <INT_TYPE_FOR_MOD M> inline Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 * n0; }template <INT_TYPE_FOR_MOD M>Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept{auto n = n0;n *= n1;return n;}template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) { return n0 / Mod<M>( n1 ); }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) / n1; }template <INT_TYPE_FOR_MOD M>Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 ){auto n = n0;n /= n1;return n;}template <INT_TYPE_FOR_MOD M>Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ){auto n = n0;n %= n1;return n;}template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) % n1.Represent(); }template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 ) { return n0 % n1.Represent(); }template <INT_TYPE_FOR_MOD M>Mod<M> Inverse( const Mod<M>& n ){auto n_copy = n;n_copy.Invert();return n_copy;}template <INT_TYPE_FOR_MOD M>Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method ){if( p >= 0 ){return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p , 1 , true , true , method );}return Inverse( Power<M>( n , -p , method ) );}template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method ) { return p == 0 ? 1 : n; }template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method ) { return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p.Represent() , method ); }template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method ) { return p == 0 ? 1 : n; }template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t ) { return t; }template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept { return to_string( n.Represent() ) + " + MZ"; }void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m ){static VLArray<INT_TYPE_FOR_MOD> memory_M{};// vectorでなくVLArrayだと引数が小さい順に呼び出した時の計算量がO(1)からO(n)に跳ね上がってしまう。static VLArray<vector<INT_TYPE_FOR_MOD> > memory_inverse{};auto itr_M = memory_M.begin() , end_M = memory_M.end();auto itr_inverse = memory_inverse.begin();vector<INT_TYPE_FOR_MOD>* p_inverse = nullptr;while( itr_M != end_M && p_inverse == nullptr ){if( *itr_M == M ){p_inverse = &( *itr_inverse );}itr_M++;itr_inverse++;}if( p_inverse == nullptr ){memory_M.push_front( M );memory_inverse.push_front( vector<INT_TYPE_FOR_MOD>() );p_inverse = &( memory_inverse.front() );p_inverse->push_back( M );}const INT_TYPE_FOR_MOD size = p_inverse->size();for( INT_TYPE_FOR_MOD i = size ; i <= n ; i++ ){p_inverse->push_back( 0 );}INT_TYPE_FOR_MOD& n_inv = ( *p_inverse )[n];if( n_inv != 0 ){m = n_inv;return;}const INT_TYPE_FOR_MOD M_abs = M >= 0 ? M : -M;const INT_TYPE_FOR_MOD n_sub = M_abs % n;INT_TYPE_FOR_MOD n_sub_inv = ( *p_inverse )[n_sub];if( n_sub_inv == 0 ){LazyEvaluationOfModularInverse( M , n_sub , n_sub_inv );}if( n_sub_inv != M ){n_inv = M_abs - ( ( n_sub_inv * ( M_abs / n ) ) % M_abs );m = n_inv;return;}for( INT_TYPE_FOR_MOD i = 1 ; i < M_abs ; i++ ){if( ( n * i ) % M_abs == 1 ){n_inv = i;m = n_inv;return;}}n_inv = M;m = n_inv;return;}template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n ) {return os << n.Represent(); }constexpr const ll P = 998244353;using MOD = Mod<P>;int main(){CIN( ll , N );if( N == 1 ){RETURN( 0 );}CIN( ll , K );CIN( ll , X );// 条件を満たす各順列PとN以下の正整数iに対し、// 長さNの順列であってPとi-1項目までは一致しi項目が一致せずPより辞書式順序で小さいものの個数をf(P,i)と置けば// sum_P f(P) = sum_P sum_i f(P,i) = sum_i sum_P f(P,i)となる。// 従って各iに対しsum_P f(P,i)を計算し総和を取ればよい。// 各i < Kに対する和// = sum_P (P[i]未満かつ第i未満成分と一致しないN以下の正整数の個数) * Factorial( N - i )// = Factorial( N - i ) * sum_P (P[i]未満かつ第i未満成分と一致しないN以下の正整数の個数)// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )// { j * (条件を満たす順列PのうちP[i]未満かつ第i未満成分と一致しないN以下の正整数の個数がj個であるものの個数) }// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )// {// j * sum( ll Pi = j + 1 ; Pi <= i + j ; Pi++ )// {// ( Pi == X ? 0 : Pi未満の正整数をj個選ぶ選び方の個数)// * ( Piより大きいN以下の正整数を(i-1)-((Pi-1)-j)個選ぶ選び方の個数)// * (長さi-1の順列の個数) * (長さN-i-1の順列の個数)// }// }// = Factorial( N - i ) * sum( ll j = 0 ; j <= N - i ) ; j++ )// {// j * sum( ll Pi = j + 1 ; Pi <= i + j ; Pi++ )// {// ( Pi == X ? 0 : Pi未満の正整数をj個選ぶ選び方の個数)// * ( Piより大きいN以下の正整数をN-i-j個選ぶ選び方の個数)// * Factrial( i - 1 ) * Factorial( N - i - 1 )// }// }// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 )// * sum( ll j = 0 ; j <= N - i ) ; j++ )// {// j * (N以下の正整数をN-i+1個選ぶ選び方のうちXを選びかつj+1番目に小さい数がXでないものの個数)// }// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i + 1 )// * sum( ll j = 0 ; j <= N - i ) ; j++ )// {// j *// (// (N-1以下の正整数をN-i個選ぶ選び方の個数)// - (X未満の正整数をj個選ぶ選び方の個数) * (Xより大きいN以下の整数をN-i-j個選ぶ選び方の個数)// )// }// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *// (// sum( ll j = 0 ; j <= N - i ) ; j++ ){ j * Combination( N - 1 , ( N - i ) }// - (Xでない正整数をN-i個選ぶ各選び方に対するX未満の選ばれた数の個数の総和)// )// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *// (// Combination( N - 1 , i - 1 ) * sum( ll j = 0 ; j <= N - i ) ; j++ ) j// - Combination( N - 1 , N - i ) * ( ( N - i ) * ( X - 1 ) / ( N - 1 ) )// )// = Factorial( N - i ) * Factrial( i - 1 ) * Factorial( N - i - 1 ) *// (// Combination( N - 1 , i - 1 ) * ( ( N - i ) * ( N - i + 1 ) ) / 2// - Combination( N - 1 , N - i ) * ( ( N - i ) * ( X - 1 ) / ( N - 1 ) )// )// = Factorial( N - 1 ) * Factorial( N - i ) * ( ( N - i + 1 ) / 2 - ( X - 1 ) / ( N - 1 ) )// i = Kに対する和// = sum_P (X未満かつ第i未満成分と一致しないN以下の正整数の個数) * Factorial( N - K )// = Factorial( N - K ) * sum( ll j = 0 ; j <= N - K ) ; j++ )// {// j * (X未満の正整数をj個選ぶ選び方の個数)// * (Xより大きいN以下の正整数を(K-1)-((X-1)-j)個選ぶ選び方の個数)// * (長さK-1の順列の個数) * (長さN-Kの順列の個数)// }// = Factorial( N - K ) * sum( ll j = max( 0 , X - K ) ; j <= min( N - K , X - 1 ) ) ; j++ )// {// j * Combination( X - 1 , j ) * Combination( N - X , K + j - X )// * Factorial( K - 1 ) * Factorial( N - K )// }// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K )// * sum( ll j = max( 0 , X - K ) ; j <= min( N - K , X - 1 ) ) ; j++ )// { j * Combination( X - 1 , j ) * Combination( N - X , N - K - j ) }// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K - 1 )// * (Xでない正整数をN-K個選ぶ各選び方に対するX未満の選ばれた数の個数の総和)// = Factorial( N - K ) * Factorial( K - 1 ) * Factorial( N - K )// * Combination( N - 1 , N - K ) * ( ( N - K ) * ( X - 1 ) / ( N - 1 ) )// = Factorial( N - 1 ) * Factorial( N - K ) * ( N - K ) * ( X - 1 ) / ( N - 1 )// i > K全体に対する総和// = ( Factorial( N - 1 ) / Factorial( N - 1 - ( K - 1 ) ) ) * sum( ll p = 0 ; p < Factorial( N - K ) ; p++ ) p// = ( Factorial( N - 1 ) / Factorial( N - K ) ) * ( Factorial( N - K ) * ( Factorial( N - K ) - 1 ) ) / 2// = Factorial( N - 1 ) * ( Factorial( N - K ) - 1 ) / 2MOD answer{};MOD Factorial[200001];MOD one{ 1 };Factorial[0] = one;FOR( i , 1 , N ){Factorial[i] = Factorial[i-1] * i;}MOD two_inverse = one / 2;MOD rate = MOD( X - 1 ) / ( N - 1 );ll NK = N - K;FOR( N_minus_i , NK + 1 , N ){answer += Factorial[N_minus_i] * ( ( N_minus_i + 1 ) * two_inverse - rate );}answer += Factorial[NK] * NK * rate;answer += ( Factorial[NK] - 1 ) * two_inverse;answer *= Factorial[N-1];RETURN( answer );}