結果

問題 No.1024 Children in a Row
ユーザー hitonanode
提出日時 2022-09-19 21:28:53
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 336 ms / 2,000 ms
コード長 10,316 bytes
コンパイル時間 2,602 ms
コンパイル使用メモリ 194,724 KB
実行使用メモリ 69,808 KB
最終ジャッジ日時 2024-12-22 02:41:54
合計ジャッジ時間 13,458 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each
    (begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r
    .first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r
    .first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end
    ()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v
    << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},
    tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {
    ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os
    << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<
    '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<
    ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa
    .second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v
    .first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for
    (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET
    << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<
    __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
// Preorder Euler Tour
//
struct PreorderEulerTour {
int V; // # of vertices of tree
int root;
std::vector<std::vector<int>> edges;
std::vector<int> subtree_begin, subtree_end;
std::vector<int> vis_order;
void _build_dfs(int now, int prv) {
subtree_begin[now] = vis_order.size();
vis_order.push_back(now);
for (auto nxt : edges[now])
if (nxt != prv) _build_dfs(nxt, now);
subtree_end[now] = vis_order.size();
}
PreorderEulerTour() = default;
PreorderEulerTour(const std::vector<std::vector<int>> &to, int root)
: V(to.size()), root(root), edges(to) {
assert(root >= 0 and root < V);
subtree_begin.resize(V);
subtree_end.resize(V);
_build_dfs(root, -1);
}
};
#include <atcoder/segtree>
int op(int l, int r) { return l + r; }
int e() { return 0; }
int main() {
int N, M;
cin >> N >> M;
vector<vector<int>> to(N + 1);
vector<int> vals;
REP(i, N + 1) vals.push_back(i);
vector<int> val2cur(N + 1, -1);
IREP(i, N) {
to.at(0).push_back(i + 1);
val2cur.at(i + 1) = i + 1;
}
vector<int> A, B, K;
vector<tuple<int, int, int>> moves;
REP(m, M) {
int a, b, k;
cin >> a >> b >> k;
A.push_back(a);
B.push_back(b);
K.push_back(k);
int curb = val2cur.at(b);
int vnew = to.size();
to.push_back({});
to.at(curb).push_back(vnew);
moves.emplace_back(val2cur.at(a), vnew, k);
val2cur.at(a) = vnew;
vals.push_back(a);
}
dbg(moves);
for (auto &x : to) reverse(ALL(x));
dbg(to);
dbg(val2cur);
PreorderEulerTour et(to, 0);
const int V = to.size();
assert(V == N + M + 1);
atcoder::segtree<int, op, e> tree(V);
FOR(n, 1, N + 1) tree.set(et.subtree_begin.at(val2cur.at(n)), 1);
for (auto [from, to, k] : moves) {
const int k_ = k;
// from = et.subtree_begin.at(from);
// to = et.subtree_begin.at(to);
const int nin = tree.prod(et.subtree_begin.at(to), et.subtree_end.at(to));
int retpos = -1;
if (et.subtree_begin.at(from) < et.subtree_begin.at(to)) {
const int nleft = tree.prod(0, et.subtree_begin.at(from));
if (nleft >= k) {
retpos = tree.max_right(0, [&](int y) { return y < k_; });
} else if (nleft + nin >= k) {
retpos = tree.max_right(et.subtree_begin.at(to), [&](int y) { return y + nleft < k_; });
} else if (tree.prod(0, et.subtree_end.at(to)) >= k) {
retpos = tree.max_right(0, [&](int y) { return y + nin < k_; });
} else {
retpos = tree.max_right(0, [&](int y) { return y < k_; });
}
} else {
const int nleft = tree.prod(0, et.subtree_begin.at(to));
const int nf = tree.prod(0, et.subtree_begin.at(from));
if (nleft >= k) {
retpos = tree.max_right(0, [&](int y) { return y < k_; });
} else if (nf - nin >= k) {
retpos = tree.max_right(0, [&](int y) { return y - nin < k_; });
} else if (nf >= k) {
retpos = tree.max_right(et.subtree_begin.at(to), [&](int y) { return y + nf - nin < k_; });
} else {
retpos = tree.max_right(0, [&](int y) { return y < k_; });
}
}
dbg(retpos);
cout << vals.at(et.vis_order.at(retpos)) << '\n';
}
dbg(vals);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0