結果
問題 | No.1025 Modular Equation |
ユーザー |
![]() |
提出日時 | 2022-09-19 21:59:29 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 19,963 bytes |
コンパイル時間 | 4,167 ms |
コンパイル使用メモリ | 232,656 KB |
実行使用メモリ | 75,532 KB |
最終ジャッジ日時 | 2024-12-22 02:48:25 |
合計ジャッジ時間 | 105,646 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 19 TLE * 13 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T, typename V>void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v<< ','; os << ']'; return os; }#if __cplusplus >= 201703Ltemplate <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},tpl); return is; }template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {((os << args << ','), ...);}, tpl); return os << ')'; }#endiftemplate <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os<< v << ','; os << '}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<'}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<','; os << '}'; return os; }template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for(auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET<< std::endl#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<__FILE__ << COLOR_RESET << std::endl : std::cerr)#else#define dbg(x) ((void)0)#define dbgif(cond, x) ((void)0)#endiftemplate <int md> struct ModInt {#if __cplusplus >= 201402L#define MDCONST constexpr#else#define MDCONST#endifusing lint = long long;MDCONST static int mod() { return md; }static int get_primitive_root() {static int primitive_root = 0;if (!primitive_root) {primitive_root = [&]() {std::set<int> fac;int v = md - 1;for (lint i = 2; i * i <= v; i++)while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < md; g++) {bool ok = true;for (auto i : fac)if (ModInt(g).pow((md - 1) / i) == 1) {ok = false;break;}if (ok) return g;}return -1;}();}return primitive_root;}int val_;int val() const noexcept { return val_; }MDCONST ModInt() : val_(0) {}MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }MDCONST ModInt(lint v) { _setval(v % md + md); }MDCONST explicit operator bool() const { return val_ != 0; }MDCONST ModInt operator+(const ModInt &x) const {return ModInt()._setval((lint)val_ + x.val_);}MDCONST ModInt operator-(const ModInt &x) const {return ModInt()._setval((lint)val_ - x.val_ + md);}MDCONST ModInt operator*(const ModInt &x) const {return ModInt()._setval((lint)val_ * x.val_ % md);}MDCONST ModInt operator/(const ModInt &x) const {return ModInt()._setval((lint)val_ * x.inv().val() % md);}MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); }MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }friend MDCONST ModInt operator+(lint a, const ModInt &x) {return ModInt()._setval(a % md + x.val_);}friend MDCONST ModInt operator-(lint a, const ModInt &x) {return ModInt()._setval(a % md - x.val_ + md);}friend MDCONST ModInt operator*(lint a, const ModInt &x) {return ModInt()._setval(a % md * x.val_ % md);}friend MDCONST ModInt operator/(lint a, const ModInt &x) {return ModInt()._setval(a % md * x.inv().val() % md);}MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; }MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; }MDCONST bool operator<(const ModInt &x) const {return val_ < x.val_;} // To use std::map<ModInt, T>friend std::istream &operator>>(std::istream &is, ModInt &x) {lint t;return is >> t, x = ModInt(t), is;}MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {return os << x.val_;}MDCONST ModInt pow(lint n) const {ModInt ans = 1, tmp = *this;while (n) {if (n & 1) ans *= tmp;tmp *= tmp, n >>= 1;}return ans;}static std::vector<ModInt> facs, facinvs, invs;MDCONST static void _precalculation(int N) {int l0 = facs.size();if (N > md) N = md;if (N <= l0) return;facs.resize(N), facinvs.resize(N), invs.resize(N);for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;facinvs[N - 1] = facs.back().pow(md - 2);for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];}MDCONST ModInt inv() const {if (this->val_ < std::min(md >> 1, 1 << 21)) {if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return invs[this->val_];} else {return this->pow(md - 2);}}MDCONST ModInt fac() const {while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return facs[this->val_];}MDCONST ModInt facinv() const {while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return facinvs[this->val_];}MDCONST ModInt doublefac() const {lint k = (this->val_ + 1) / 2;return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()): ModInt(k).fac() * ModInt(2).pow(k);}MDCONST ModInt nCr(const ModInt &r) const {return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();}MDCONST ModInt nPr(const ModInt &r) const {return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv();}ModInt sqrt() const {if (val_ == 0) return 0;if (md == 2) return val_;if (pow((md - 1) / 2) != 1) return 0;ModInt b = 1;while (b.pow((md - 1) / 2) == 1) b += 1;int e = 0, m = md - 1;while (m % 2 == 0) m >>= 1, e++;ModInt x = pow((m - 1) / 2), y = (*this) * x * x;x *= (*this);ModInt z = b.pow(m);while (y != 1) {int j = 0;ModInt t = y;while (t != 1) j++, t *= t;z = z.pow(1LL << (e - j - 1));x *= z, z *= z, y *= z;e = j;}return ModInt(std::min(x.val_, md - x.val_));}};template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};using mint = ModInt<1000000007>;// Integer convolution for arbitrary mod// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.// input: a (size: n), b (size: m)// return: vector (size: n + m - 1)template <typename MODINT>std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);constexpr int nttprimes[3] = {998244353, 167772161, 469762049};// Integer FFT (Fast Fourier Transform) for ModInt class// (Also known as Number Theoretic Transform, NTT)// is_inverse: inverse transform// ** Input size must be 2^n **template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {int n = a.size();if (n == 1) return;static const int mod = MODINT::mod();static const MODINT root = MODINT::get_primitive_root();assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);static std::vector<MODINT> w{1}, iw{1};for (int m = w.size(); m < n / 2; m *= 2) {MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;w.resize(m * 2), iw.resize(m * 2);for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;}if (!is_inverse) {for (int m = n; m >>= 1;) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m] * w[k];a[i] = x + y, a[i + m] = x - y;}}}} else {for (int m = 1; m < n; m *= 2) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m];a[i] = x + y, a[i + m] = (x - y) * iw[k];}}}int n_inv = MODINT(n).inv().val();for (auto &v : a) v *= n_inv;}}template <int MOD>std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {int sz = a.size();assert(a.size() == b.size() and __builtin_popcount(sz) == 1);std::vector<ModInt<MOD>> ap(sz), bp(sz);for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];ntt(ap, false);if (a == b)bp = ap;elsentt(bp, false);for (int i = 0; i < sz; i++) ap[i] *= bp[i];ntt(ap, true);return ap;}long long garner_ntt_(int r0, int r1, int r2, int mod) {using mint2 = ModInt<nttprimes[2]>;static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();static const long long m01_inv_m2 = mint2(m01).inv().val();int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;}template <typename MODINT>std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {if (a.empty() or b.empty()) return {};int sz = 1, n = a.size(), m = b.size();while (sz < n + m) sz <<= 1;if (sz <= 16) {std::vector<MODINT> ret(n + m - 1);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];}return ret;}int mod = MODINT::mod();if (skip_garner orstd::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {a.resize(sz), b.resize(sz);if (a == b) {ntt(a, false);b = a;} else {ntt(a, false), ntt(b, false);}for (int i = 0; i < sz; i++) a[i] *= b[i];ntt(a, true);a.resize(n + m - 1);} else {std::vector<int> ai(sz), bi(sz);for (int i = 0; i < n; i++) ai[i] = a[i].val();for (int i = 0; i < m; i++) bi[i] = b[i].val();auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);a.resize(n + m - 1);for (int i = 0; i < n + m - 1; i++)a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);}return a;}template <typename MODINT>std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {return nttconv<MODINT>(a, b, false);}vector<mint> prod(const vector<mint> &v1, const vector<mint> &v2) {auto ret = nttconv(v1, v2);while (ret.size() > v1.size()) {ret[ret.size() - 1 - v1.size()] += ret.back();ret.pop_back();}return ret;}vector<mint> vpow(vector<mint> v, int n){if (n == 1) return v;const int vsz = v.size();vector<mint> ret(vsz);ret[0] = 1;while (n){if (n & 1) ret = prod(ret, v);n >>= 1;if (!n) return ret;v = prod(v, v);v.resize(vsz);}return ret;}lint power(lint x, lint n, lint MOD){lint ans = 1;while (n>0){if (n & 1) (ans *= x) %= MOD;(x *= x) %= MOD;n >>= 1;}return ans;}void experiment(int p, int k) {vector<int> cnt(p);REP(i, p) cnt.at(power(i, k, p))++;int nnonzero = 0;REP(i, p) nnonzero += (cnt.at(i) > 0);set<vector<int>> se;REP(a, p) {vector<int> tmp(p);REP(i, p) tmp.at(i * a % p) += cnt.at(i);se.insert(tmp);}assert((nnonzero - 1) * (se.size() - 1) == p - 1);dbg(make_tuple(p, k, nnonzero, se.size()));}int main(){// for (int p : {17, 19, 23, 29, 31, 37}) {// FOR(k, 1, p) experiment(p, k);// }// exit(0);int P, N, K, B;cin >> P >> N >> K >> B;vector<int> A(N);cin >> A;if (A == vector<int>(N, 0)) {if (B) {puts("0");} else {cout << mint(P).pow(N) << endl;}return 0;}if (K % (P - 1) == 1) {cout << mint(P).pow(N - 1) << "\n";return 0;}if (K % (P - 1) == 0) {vector<mint> dp(P);dp[0] = 1;for (auto a : A) {vector<mint> dpnxt = dp;REP(i, P) dpnxt[(i + a >= P ? i + a - P : i + a)] += dp[i] * (P - 1);dp = dpnxt;}cout << dp.at(B) << endl;return 0;}// map<int, int> acnt;// for (auto a : A) acnt[a]++;vector<mint> f(P);REP(x, P) f[power(x, K, P)] += 1;vector<int> nonzero_is;REP(i, P) if (f[i] != 0) nonzero_is.push_back(i);dbgif(P <= 20, f);vector<int> mini2a(P, -1), minicnt(P);for (auto a : A) {lint mini = P;for (int i : nonzero_is) {if (i) chmin(mini, 1LL * i * a % P);}mini2a.at(mini) = a;++minicnt.at(mini);}vector<mint> dp(P);dp[0] = 1;vector<mint> g(P);REP(p, P) {if (!minicnt.at(p)) continue;for (auto i : nonzero_is) g[1LL * i * mini2a[p] % P] += f[i];dp = prod(dp, vpow(g, minicnt[p]));for (auto i : nonzero_is) g[1LL * i * mini2a[p] % P] -= f[i];}cout << dp[B] << "\n";}