結果
問題 | No.1145 Sums of Powers |
ユーザー | rniya |
提出日時 | 2022-09-20 10:38:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 348 ms / 2,000 ms |
コード長 | 15,587 bytes |
コンパイル時間 | 4,643 ms |
コンパイル使用メモリ | 249,168 KB |
実行使用メモリ | 8,708 KB |
最終ジャッジ日時 | 2024-12-22 03:23:30 |
合計ジャッジ時間 | 6,197 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 335 ms
8,660 KB |
testcase_04 | AC | 342 ms
8,708 KB |
testcase_05 | AC | 348 ms
8,660 KB |
ソースコード
#define LOCAL #include <bits/stdc++.h> using namespace std; #pragma region Macros typedef long long ll; typedef __int128_t i128; typedef unsigned int uint; typedef unsigned long long ull; #define ALL(x) (x).begin(), (x).end() template <typename T> istream& operator>>(istream& is, vector<T>& v) { for (T& x : v) is >> x; return is; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { for (size_t i = 0; i < v.size(); i++) { os << v[i] << (i + 1 == v.size() ? "" : " "); } return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const set<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) { for (size_t i = 0; i < v.size(); i++) { os << v[i] << (i + 1 == v.size() ? "" : " "); } return os; } template <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) { for (size_t i = 0; i < N; i++) { os << v[i] << (i + 1 == N ? "" : " "); } return os; } template <int i, typename T> void print_tuple(ostream&, const T&) {} template <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) { if (i) os << ','; os << get<i>(t); print_tuple<i + 1, T, Args...>(os, t); } template <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) { os << '{'; print_tuple<0, tuple<Args...>, Args...>(os, t); return os << '}'; } void debug_out() { cerr << '\n'; } template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) { cerr << head; if (sizeof...(Tail) > 0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) \ cerr << " "; \ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \ cerr << " "; \ debug_out(__VA_ARGS__) #else #define debug(...) void(0) #endif template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; } template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); } int popcount(signed t) { return __builtin_popcount(t); } int popcount(long long t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } long long MSK(int n) { return (1LL << n) - 1; } template <class T> T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template <class T> T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x - y + 1) / y); } template <class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; } template <class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; } template <typename T> void mkuni(vector<T>& v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); } template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); } #pragma endregion #include <iostream> #include "atcoder/modint" namespace atcoder { template <int MOD> std::istream& operator>>(std::istream& is, static_modint<MOD>& x) { int64_t v; x = static_modint<MOD>{(is >> v, v)}; return is; } template <int MOD> std::ostream& operator<<(std::ostream& os, const static_modint<MOD>& x) { return os << x.val(); } template <int ID> std::ostream& operator<<(std::ostream& os, const dynamic_modint<ID>& x) { return os << x.val(); } } // namespace atcoder #include <algorithm> #include <cassert> #include <functional> #include <vector> #include "atcoder/convolution" template <typename T> struct FormalPowerSeries : std::vector<T> { private: using std::vector<T>::vector; using FPS = FormalPowerSeries; void shrink() { while (this->size() and this->back() == T(0)) this->pop_back(); } FPS pre(size_t sz) const { return FPS(this->begin(), this->begin() + std::min(this->size(), sz)); } FPS operator>>(size_t sz) const { if (this->size() <= sz) return {}; return FPS(this->begin() + sz, this->end()); } FPS operator<<(size_t sz) const { if (this->empty()) return {}; FPS ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } public: FPS& operator+=(const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (size_t i = 0; i < r.size(); i++) (*this)[i] += r[i]; shrink(); return *this; } FPS& operator+=(const T& v) { if (this->empty()) this->resize(1); (*this)[0] += v; shrink(); return *this; } FPS& operator-=(const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (size_t i = 0; i < r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } FPS& operator-=(const T& v) { if (this->empty()) this->resize(1); (*this)[0] -= v; shrink(); return *this; } FPS& operator*=(const FPS& r) { auto res = atcoder::convolution(*this, r); return *this = {res.begin(), res.end()}; } FPS& operator*=(const T& v) { for (auto& x : (*this)) x *= v; shrink(); return *this; } FPS operator+(const FPS& r) const { return FPS(*this) += r; } FPS operator+(const T& v) const { return FPS(*this) += v; } FPS operator-(const FPS& r) const { return FPS(*this) -= r; } FPS operator-(const T& v) const { return FPS(*this) -= v; } FPS operator*(const FPS& r) const { return FPS(*this) *= r; } FPS operator*(const T& v) const { return FPS(*this) *= v; } FPS operator-() const { FPS ret = *this; for (auto& v : ret) v = -v; return ret; } FPS differential() const { const int n = (int)this->size(); FPS ret(std::max(0, n - 1)); for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = T(0); if (n > 0) ret[1] = T(1); auto mod = T::mod(); for (int i = 2; i <= n; i++) ret[i] = -ret[mod % i] * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } FPS inv(int deg = -1) const { assert((*this)[0] != T(0)); const int n = (int)this->size(); if (deg == -1) deg = n; FPS ret{(*this)[0].inv()}; ret.reserve(deg); for (int d = 1; d < deg; d <<= 1) { FPS f(d << 1), g(d << 1); std::copy(this->begin(), this->begin() + std::min(n, d << 1), f.begin()); std::copy(ret.begin(), ret.end(), g.begin()); atcoder::internal::butterfly(f); atcoder::internal::butterfly(g); for (int i = 0; i < (d << 1); i++) f[i] *= g[i]; atcoder::internal::butterfly_inv(f); std::fill(f.begin(), f.begin() + d, T(0)); atcoder::internal::butterfly(f); for (int i = 0; i < (d << 1); i++) f[i] *= g[i]; atcoder::internal::butterfly_inv(f); T iz = T(d << 1).inv(); iz *= -iz; for (int i = d; i < std::min(d << 1, deg); i++) ret.push_back(f[i] * iz); } return ret.pre(deg); } FPS log(int deg = -1) const { assert((*this)[0] == T(1)); if (deg == -1) deg = (int)this->size(); return (differential() * inv(deg)).pre(deg - 1).integral(); } FPS sqrt(const std::function<T(T)>& get_sqrt, int deg = -1) const { const int n = this->size(); if (deg == -1) deg = n; if (this->empty()) return FPS(deg, 0); if ((*this)[0] == T(0)) { for (int i = 1; i < n; i++) { if ((*this)[i] != T(0)) { if (i & 1) return {}; if (deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(get_sqrt, deg - i / 2); if (ret.empty()) return {}; ret = ret << (i / 2); if ((int)ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return FPS(deg, T(0)); } auto sqrtf0 = T(get_sqrt((*this)[0])); if (sqrtf0 * sqrtf0 != (*this)[0]) return {}; FPS ret{sqrtf0}; T inv2 = T(2).inv(); for (int i = 1; i < deg; i <<= 1) ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; return ret.pre(deg); } /** * @brief Exp of Formal Power Series * * @see https://arxiv.org/pdf/1301.5804.pdf */ FPS exp(int deg = -1) const { assert(this->empty() or (*this)[0] == T(0)); if (this->size() == 0) return {}; if (this->size() == 1) return {T(1)}; if (deg == -1) deg = (int)this->size(); FPS inv; inv.reserve(deg + 1); inv.push_back(T(0)); inv.push_back(T(1)); auto inplace_integral = [&](FPS& F) -> void { const int n = (int)F.size(); auto mod = T::mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back(-inv[mod % i] * (mod / i)); } F.insert(F.begin(), T(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_differential = [](FPS& F) -> void { if (F.empty()) return; F.erase(F.begin()); for (size_t i = 0; i < F.size(); i++) F[i] *= T(i + 1); }; FPS f{1, (*this)[1]}, g{T(1)}, g_fft{T(1), T(1)}; for (int m = 2; m < deg; m <<= 1) { const T iz1 = T(m).inv(), iz2 = T(m << 1).inv(); auto f_fft = f; f_fft.resize(m << 1); atcoder::internal::butterfly(f_fft); { // Step 2.a' FPS _g(m); for (int i = 0; i < m; i++) _g[i] = f_fft[i] * g_fft[i]; atcoder::internal::butterfly_inv(_g); std::fill(_g.begin(), _g.begin() + (m >> 1), T(0)); atcoder::internal::butterfly(_g); for (int i = 0; i < m; i++) _g[i] *= -g_fft[i] * iz1 * iz1; atcoder::internal::butterfly_inv(_g); g.insert(g.end(), _g.begin() + (m >> 1), _g.end()); g_fft = g; g_fft.resize(m << 1); atcoder::internal::butterfly(g_fft); } FPS x(this->begin(), this->begin() + std::min((int)this->size(), m)); { // Step 2.b' x.resize(m); inplace_differential(x); x.push_back(T(0)); atcoder::internal::butterfly(x); } { // Step 2.c' for (int i = 0; i < m; i++) x[i] *= f_fft[i] * iz1; atcoder::internal::butterfly_inv(x); } { // Step 2.d' and 2.e' x -= f.differential(); x.resize(m << 1); for (int i = 0; i < m - 1; i++) x[m + i] = x[i], x[i] = T(0); atcoder::internal::butterfly(x); for (int i = 0; i < (m << 1); i++) x[i] *= g_fft[i] * iz2; atcoder::internal::butterfly_inv(x); } { // Step 2.f' x.pop_back(); inplace_integral(x); for (int i = m; i < std::min((int)this->size(), m << 1); i++) x[i] += (*this)[i]; std::fill(x.begin(), x.begin() + m, T(0)); } { // Step 2.g' and 2.h' atcoder::internal::butterfly(x); for (int i = 0; i < (m << 1); i++) x[i] *= f_fft[i] * iz2; atcoder::internal::butterfly_inv(x); f.insert(f.end(), x.begin() + m, x.end()); } } return FPS{f.begin(), f.begin() + deg}; } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != T(0)) { if (i * k > deg) return FPS(deg, T(0)); T rev = (*this)[i].inv(); FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return FPS(deg, T(0)); } T eval(T x) const { T ret = 0, w = 1; for (const auto& v : *this) ret += w * v, w *= x; return ret; } }; const int INF = 1e9; const long long IINF = 1e18; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const char dir[4] = {'D', 'R', 'U', 'L'}; const long long MOD = 1000000007; // const long long MOD = 998244353; using mint = atcoder::modint998244353; using FPS = FormalPowerSeries<mint>; int main() { cin.tie(0); ios::sync_with_stdio(false); int N, M; cin >> N >> M; vector<int> A(N); for (int& x : A) cin >> x; auto calc = [&](auto self, int l, int r) -> pair<FPS, FPS> { if (r - l == 1) return make_pair(FPS{1}, FPS{1, -A[l]}); int m = (l + r) >> 1; auto L = self(self, l, m), R = self(self, m, r); return make_pair(L.first * R.second + R.first * L.second, L.second * R.second); }; auto res = calc(calc, 0, N); auto ans = res.first * res.second.inv(M + 1); for (int i = 1; i <= M; i++) cout << ans[i] << (i == M ? '\n' : ' '); return 0; }