結果
| 問題 |
No.1145 Sums of Powers
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2022-09-20 10:45:19 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 155 ms / 2,000 ms |
| コード長 | 15,445 bytes |
| コンパイル時間 | 3,826 ms |
| コンパイル使用メモリ | 239,324 KB |
| 最終ジャッジ日時 | 2025-02-07 12:59:39 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(), (x).end()
template <typename T> istream& operator>>(istream& is, vector<T>& v) {
for (T& x : v) is >> x;
return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
for (size_t i = 0; i < v.size(); i++) {
os << v[i] << (i + 1 == v.size() ? "" : " ");
}
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {
for (size_t i = 0; i < v.size(); i++) {
os << v[i] << (i + 1 == v.size() ? "" : " ");
}
return os;
}
template <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {
for (size_t i = 0; i < N; i++) {
os << v[i] << (i + 1 == N ? "" : " ");
}
return os;
}
template <int i, typename T> void print_tuple(ostream&, const T&) {}
template <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {
if (i) os << ',';
os << get<i>(t);
print_tuple<i + 1, T, Args...>(os, t);
}
template <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {
os << '{';
print_tuple<0, tuple<Args...>, Args...>(os, t);
return os << '}';
}
void debug_out() { cerr << '\n'; }
template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {
cerr << head;
if (sizeof...(Tail) > 0) cerr << ", ";
debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) \
cerr << " "; \
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \
cerr << " "; \
debug_out(__VA_ARGS__)
#else
#define debug(...) void(0)
#endif
template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(long long t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
long long MSK(int n) { return (1LL << n) - 1; }
template <class T> T ceil(T x, T y) {
assert(y >= 1);
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
assert(y >= 1);
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T> void mkuni(vector<T>& v) {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
}
template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }
#pragma endregion
#include <iostream>
#include "atcoder/modint"
namespace atcoder {
template <int MOD> std::istream& operator>>(std::istream& is, static_modint<MOD>& x) {
int64_t v;
x = static_modint<MOD>{(is >> v, v)};
return is;
}
template <int MOD> std::ostream& operator<<(std::ostream& os, const static_modint<MOD>& x) { return os << x.val(); }
template <int ID> std::ostream& operator<<(std::ostream& os, const dynamic_modint<ID>& x) { return os << x.val(); }
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>
#include "atcoder/convolution"
template <typename T> struct FormalPowerSeries : std::vector<T> {
private:
using std::vector<T>::vector;
using FPS = FormalPowerSeries;
void shrink() {
while (this->size() and this->back() == T(0)) this->pop_back();
}
FPS pre(size_t sz) const { return FPS(this->begin(), this->begin() + std::min(this->size(), sz)); }
FPS operator>>(size_t sz) const {
if (this->size() <= sz) return {};
return FPS(this->begin() + sz, this->end());
}
FPS operator<<(size_t sz) const {
if (this->empty()) return {};
FPS ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
public:
FPS& operator+=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (size_t i = 0; i < r.size(); i++) (*this)[i] += r[i];
shrink();
return *this;
}
FPS& operator+=(const T& v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
shrink();
return *this;
}
FPS& operator-=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (size_t i = 0; i < r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
FPS& operator-=(const T& v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
shrink();
return *this;
}
FPS& operator*=(const FPS& r) {
auto res = atcoder::convolution(*this, r);
return *this = {res.begin(), res.end()};
}
FPS& operator*=(const T& v) {
for (auto& x : (*this)) x *= v;
shrink();
return *this;
}
FPS operator+(const FPS& r) const { return FPS(*this) += r; }
FPS operator+(const T& v) const { return FPS(*this) += v; }
FPS operator-(const FPS& r) const { return FPS(*this) -= r; }
FPS operator-(const T& v) const { return FPS(*this) -= v; }
FPS operator*(const FPS& r) const { return FPS(*this) *= r; }
FPS operator*(const T& v) const { return FPS(*this) *= v; }
FPS operator-() const {
FPS ret = *this;
for (auto& v : ret) v = -v;
return ret;
}
FPS differential() const {
const int n = (int)this->size();
FPS ret(std::max(0, n - 1));
for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = T(0);
if (n > 0) ret[1] = T(1);
auto mod = T::mod();
for (int i = 2; i <= n; i++) ret[i] = -ret[mod % i] * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
FPS inv(int deg = -1) const {
assert((*this)[0] != T(0));
const int n = (int)this->size();
if (deg == -1) deg = n;
FPS ret{(*this)[0].inv()};
ret.reserve(deg);
for (int d = 1; d < deg; d <<= 1) {
FPS f(d << 1), g(d << 1);
std::copy(this->begin(), this->begin() + std::min(n, d << 1), f.begin());
std::copy(ret.begin(), ret.end(), g.begin());
atcoder::internal::butterfly(f);
atcoder::internal::butterfly(g);
for (int i = 0; i < (d << 1); i++) f[i] *= g[i];
atcoder::internal::butterfly_inv(f);
std::fill(f.begin(), f.begin() + d, T(0));
atcoder::internal::butterfly(f);
for (int i = 0; i < (d << 1); i++) f[i] *= g[i];
atcoder::internal::butterfly_inv(f);
T iz = T(d << 1).inv();
iz *= -iz;
for (int i = d; i < std::min(d << 1, deg); i++) ret.push_back(f[i] * iz);
}
return ret.pre(deg);
}
FPS log(int deg = -1) const {
assert((*this)[0] == T(1));
if (deg == -1) deg = (int)this->size();
return (differential() * inv(deg)).pre(deg - 1).integral();
}
FPS sqrt(const std::function<T(T)>& get_sqrt, int deg = -1) const {
const int n = this->size();
if (deg == -1) deg = n;
if (this->empty()) return FPS(deg, 0);
if ((*this)[0] == T(0)) {
for (int i = 1; i < n; i++) {
if ((*this)[i] != T(0)) {
if (i & 1) return {};
if (deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(get_sqrt, deg - i / 2);
if (ret.empty()) return {};
ret = ret << (i / 2);
if ((int)ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return FPS(deg, T(0));
}
auto sqrtf0 = T(get_sqrt((*this)[0]));
if (sqrtf0 * sqrtf0 != (*this)[0]) return {};
FPS ret{sqrtf0};
T inv2 = T(2).inv();
for (int i = 1; i < deg; i <<= 1) ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
return ret.pre(deg);
}
/**
* @brief Exp of Formal Power Series
*
* @see https://arxiv.org/pdf/1301.5804.pdf
*/
FPS exp(int deg = -1) const {
assert(this->empty() or (*this)[0] == T(0));
if (this->size() == 0) return {};
if (this->size() == 1) return {T(1)};
if (deg == -1) deg = (int)this->size();
FPS inv;
inv.reserve(deg + 1);
inv.push_back(T(0));
inv.push_back(T(1));
auto inplace_integral = [&](FPS& F) -> void {
const int n = (int)F.size();
auto mod = T::mod();
while ((int)inv.size() <= n) {
int i = inv.size();
inv.push_back(-inv[mod % i] * (mod / i));
}
F.insert(F.begin(), T(0));
for (int i = 1; i <= n; i++) F[i] *= inv[i];
};
auto inplace_differential = [](FPS& F) -> void {
if (F.empty()) return;
F.erase(F.begin());
for (size_t i = 0; i < F.size(); i++) F[i] *= T(i + 1);
};
FPS f{1, (*this)[1]}, g{T(1)}, g_fft{T(1), T(1)};
for (int m = 2; m < deg; m <<= 1) {
const T iz1 = T(m).inv(), iz2 = T(m << 1).inv();
auto f_fft = f;
f_fft.resize(m << 1);
atcoder::internal::butterfly(f_fft);
{
// Step 2.a'
FPS _g(m);
for (int i = 0; i < m; i++) _g[i] = f_fft[i] * g_fft[i];
atcoder::internal::butterfly_inv(_g);
std::fill(_g.begin(), _g.begin() + (m >> 1), T(0));
atcoder::internal::butterfly(_g);
for (int i = 0; i < m; i++) _g[i] *= -g_fft[i] * iz1 * iz1;
atcoder::internal::butterfly_inv(_g);
g.insert(g.end(), _g.begin() + (m >> 1), _g.end());
g_fft = g;
g_fft.resize(m << 1);
atcoder::internal::butterfly(g_fft);
}
FPS x(this->begin(), this->begin() + std::min((int)this->size(), m));
{
// Step 2.b'
x.resize(m);
inplace_differential(x);
x.push_back(T(0));
atcoder::internal::butterfly(x);
}
{
// Step 2.c'
for (int i = 0; i < m; i++) x[i] *= f_fft[i] * iz1;
atcoder::internal::butterfly_inv(x);
}
{
// Step 2.d' and 2.e'
x -= f.differential();
x.resize(m << 1);
for (int i = 0; i < m - 1; i++) x[m + i] = x[i], x[i] = T(0);
atcoder::internal::butterfly(x);
for (int i = 0; i < (m << 1); i++) x[i] *= g_fft[i] * iz2;
atcoder::internal::butterfly_inv(x);
}
{
// Step 2.f'
x.pop_back();
inplace_integral(x);
for (int i = m; i < std::min((int)this->size(), m << 1); i++) x[i] += (*this)[i];
std::fill(x.begin(), x.begin() + m, T(0));
}
{
// Step 2.g' and 2.h'
atcoder::internal::butterfly(x);
for (int i = 0; i < (m << 1); i++) x[i] *= f_fft[i] * iz2;
atcoder::internal::butterfly_inv(x);
f.insert(f.end(), x.begin() + m, x.end());
}
}
return FPS{f.begin(), f.begin() + deg};
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
for (int i = 0; i < n; i++) {
if ((*this)[i] != T(0)) {
if (i * k > deg) return FPS(deg, T(0));
T rev = (*this)[i].inv();
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k));
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return FPS(deg, T(0));
}
T eval(T x) const {
T ret = 0, w = 1;
for (const auto& v : *this) ret += w * v, w *= x;
return ret;
}
};
const int INF = 1e9;
const long long IINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const char dir[4] = {'D', 'R', 'U', 'L'};
const long long MOD = 1000000007;
// const long long MOD = 998244353;
using mint = atcoder::modint998244353;
using FPS = FormalPowerSeries<mint>;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, M;
cin >> N >> M;
vector<int> A(N);
for (int& x : A) cin >> x;
auto calc = [&](auto self, int l, int r) -> FPS {
if (r - l == 1) return FPS{1, -A[l]};
int m = (l + r) >> 1;
return self(self, l, m) * self(self, m, r);
};
auto res = calc(calc, 0, N);
res = -res.log(M + 1);
for (int i = 1; i <= M; i++) cout << res[i] * i << (i == M ? '\n' : ' ');
return 0;
}
rniya