結果
問題 | No.2097 AND^k |
ユーザー | taiga0629kyopro |
提出日時 | 2022-09-20 11:02:28 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,087 ms / 5,000 ms |
コード長 | 6,662 bytes |
コンパイル時間 | 415 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 248,924 KB |
最終ジャッジ日時 | 2024-12-22 04:23:49 |
合計ジャッジ時間 | 26,069 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 54 ms
64,640 KB |
testcase_01 | AC | 54 ms
64,512 KB |
testcase_02 | AC | 56 ms
64,640 KB |
testcase_03 | AC | 56 ms
66,048 KB |
testcase_04 | AC | 79 ms
76,032 KB |
testcase_05 | AC | 59 ms
66,432 KB |
testcase_06 | AC | 53 ms
64,768 KB |
testcase_07 | AC | 62 ms
67,328 KB |
testcase_08 | AC | 815 ms
163,452 KB |
testcase_09 | AC | 482 ms
128,144 KB |
testcase_10 | AC | 850 ms
164,256 KB |
testcase_11 | AC | 446 ms
121,536 KB |
testcase_12 | AC | 416 ms
118,028 KB |
testcase_13 | AC | 1,748 ms
248,544 KB |
testcase_14 | AC | 1,665 ms
248,780 KB |
testcase_15 | AC | 1,910 ms
248,520 KB |
testcase_16 | AC | 1,495 ms
234,964 KB |
testcase_17 | AC | 1,855 ms
248,776 KB |
testcase_18 | AC | 1,649 ms
248,152 KB |
testcase_19 | AC | 1,539 ms
242,204 KB |
testcase_20 | AC | 1,493 ms
235,096 KB |
testcase_21 | AC | 1,492 ms
234,868 KB |
testcase_22 | AC | 1,616 ms
247,904 KB |
testcase_23 | AC | 1,551 ms
242,200 KB |
testcase_24 | AC | 51 ms
64,512 KB |
testcase_25 | AC | 2,087 ms
248,924 KB |
ソースコード
mod=998244353 ############################# ############# cnb_max=3*10**5 ############# kai=[1]*(cnb_max+1) rkai=[1]*(cnb_max+1) for i in range(cnb_max): kai[i+1]=kai[i]*(i+1)%mod rkai[cnb_max]=pow(kai[cnb_max],mod-2,mod) for i in range(cnb_max): rkai[cnb_max-1-i]=rkai[cnb_max-i]*(cnb_max-i)%mod def cnb(x,y): if y>x: return 0 if x<0:return 0 if y<0:return 0 return (kai[x]*rkai[y]%mod)*rkai[x-y]%mod def inv(n): return kai[n-1]*rkai[n]%mod ################################## # AtCoder Libary v1.4 を python に移植したもの # https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp #https://judge.yosupo.jp/submission/55648 MOD = 998244353 IMAG = 911660635 IIMAG = 86583718 rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0) irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0) rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0) irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0) def butterfly(a): n = len(a) h = (n - 1).bit_length() le = 0 while le < h: if h - le == 1: p = 1 << (h - le - 1) rot = 1 for s in range(1 << le): offset = s << (h - le) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot a[i + offset] = (l + r) % MOD a[i + offset + p] = (l - r) % MOD rot *= rate2[(~s & -~s).bit_length()] rot %= MOD le += 1 else: p = 1 << (h - le - 2) rot = 1 for s in range(1 << le): rot2 = rot * rot % MOD rot3 = rot2 * rot % MOD offset = s << (h - le) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % MOD * IMAG a[i + offset] = (a0 + a2 + a1 + a3) % MOD a[i + offset + p] = (a0 + a2 - a1 - a3) % MOD a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MOD a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MOD rot *= rate3[(~s & -~s).bit_length()] rot %= MOD le += 2 def butterfly_inv(a): n = len(a) h = (n - 1).bit_length() le = h while le: if le == 1: p = 1 << (h - le) irot = 1 for s in range(1 << (le - 1)): offset = s << (h - le + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % MOD a[i + offset + p] = (l - r) * irot % MOD irot *= irate2[(~s & -~s).bit_length()] irot %= MOD le -= 1 else: p = 1 << (h - le) irot = 1 for s in range(1 << (le - 2)): irot2 = irot * irot % MOD irot3 = irot2 * irot % MOD offset = s << (h - le + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * IIMAG % MOD a[i + offset] = (a0 + a1 + a2 + a3) % MOD a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MOD a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MOD a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MOD irot *= irate3[(~s & -~s).bit_length()] irot %= MOD le -= 2 def multiply(s, t): n = len(s) m = len(t) if min(n, m) <= 60: a = [0] * (n + m - 1) for i in range(n): if i % 8 == 0: for j in range(m): a[i + j] += s[i] * t[j] a[i + j] %= MOD else: for j in range(m): a[i + j] += s[i] * t[j] return [x % MOD for x in a] a = s.copy() b = t.copy() z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) b += [0] * (z - m) butterfly(a) butterfly(b) for i in range(z): a[i] *= b[i] a[i] %= MOD butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, MOD - 2, MOD) return [v * iz % MOD for v in a] def naive(n,m,l): dp=[0]*(2**m) dp[2**m-1]=1 for i in range(n): newdp=[0]*(2**m) for j in range(2**m): for ai in range(2**m): dp[j]%=mod newdp[j&ai]+=dp[j] dp=newdp[:] ans=[0] for k in range(1,l+1): res=0 for j in range(2**m): res+=pow(j,k,mod)*dp[j] res%=mod ans.append(res%mod) return ans def sol1(n,m,l): fx=[0]*(l+1) fx[0]=1 invn2=pow(2,n*(mod-2),mod) for i in range(m): gx=[0]*(l+1) gx[0]=1 i2=pow(2,i,mod) nod=i2 for a in range(1,l+1): gx[a]=nod*rkai[a]%mod gx[a]*=invn2 gx[a]%=mod nod=nod*i2%mod fx=multiply(fx,gx)[:l+1] ans=[0] for k in range(1,l+1): res=pow(2,n*m,mod)*kai[k]%mod res*=fx[k] ans.append(res%mod) return ans def sol2(n,m,l): invn2 = pow(2, n * (mod - 2), mod) def f(i): gx=[0]*(l+1) gx[0]=1 i2 = pow(2, i, mod) nod = i2 for a in range(1, l + 1): gx[a] = nod * rkai[a] % mod gx[a] *= invn2 gx[a] %= mod nod = nod * i2 % mod return gx def F(i): if i==0:return f(i) num=i+1 if num%2==0: res=F(i//2) res2=res[:] d=pow(2,num//2,mod) nod=d for a in range(1,l+1): res[a]=res[a]*nod%mod nod=nod*d%mod return multiply(res,res2)[:l+1] else: return multiply(F(i-1),f(i))[:l+1] fx=F(m-1) ans = [0] for k in range(1, l + 1): res = pow(2, n * m, mod) * kai[k] % mod res *= fx[k] ans.append(res % mod) return ans n,m,l=map(int,input().split()) ans=sol2(n,m,l) for k in range(1,l+1):print(ans[k])