結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
👑 |
| 提出日時 | 2022-09-20 11:46:21 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 26 ms / 9,973 ms |
| コード長 | 7,197 bytes |
| コンパイル時間 | 12,041 ms |
| コンパイル使用メモリ | 380,884 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-22 03:29:10 |
| 合計ジャッジ時間 | 13,125 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
// -*- coding:utf-8-unix -*-
// モンゴメリ剰余乗算 (Montgomery modular multiplication)
pub struct Mont<T, BitCounts=u32> {
n: T, // n is odd, and n > 2
ni: T, // n * ni == 1 (mod 2**64 {@T=u64})
r: T, // == 2**64 {@T=u64} (mod n)
rn: T, // == -1 * (2**64 {T=u64}) (mod n)
r2: T, // == 2**128 {@T=u64} (mod n)
d: T, // == (n - 1) >> (n - 1).trailing_zeros()
k: BitCounts, // == (n - 1).trailing_zeros()
}
pub trait MontTrait<T, BitCounts=u32> {
fn n(&self) -> T;
fn ni(&self) -> T;
fn r(&self) -> T;
fn rn(&self) -> T;
fn r2(&self) -> T;
fn d(&self) -> T;
fn k(&self) -> BitCounts;
// create constant structures for montgomery modular arithmetic
fn new(n: T) -> Self;
// addmod(a, b) == a + b (mod n)
fn add(&self, a: T, b: T) -> T;
// submod(a, b) == a - b (mod n)
fn sub(&self, a: T, b: T) -> T;
// mrmul(ar, br) == (ar * br) / r (mod n)
// R == 2**64 {@T=u64}
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// 0 <= br < N < R
// T := ar * br
// t := floor(T / R) - floor(((T * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
fn mrmul(&self, ar: T, br: T) -> T;
// mr(ar) == ar / r (mod n)
// R == 2**64 {@T=u64}
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// t := floor(ar / R) - floor(((ar * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
fn mr(&self, ar: T) -> T;
// ar(a) == a * r (mod n)
fn ar(&self, a: T) -> T;
// powir(ar, b) == ((ar / r) ** b) * r (mod n)
fn pow(&self, ar: T, b: T) -> T;
}
impl MontTrait<u64> for Mont<u64> {
#[inline] fn n(&self) -> u64 { self.n }
#[inline] fn ni(&self) -> u64 { self.ni }
#[inline] fn r(&self) -> u64 { self.r }
#[inline] fn rn(&self) -> u64 { self.rn }
#[inline] fn r2(&self) -> u64 { self.r2 }
#[inline] fn d(&self) -> u64 { self.d }
#[inline] fn k(&self) -> u32 { self.k }
#[inline]
fn new(n: u64) -> Self {
// create constant structures for montgomery modular arithmetic
debug_assert_eq!(n & 1, 1);
// // n is odd number, n = 2*k+1, n >= 1, n < 2**64, k is non-negative integer, k >= 0, k < 2**63
// ni0 := n; // = 2*k+1 = (1+(2**3)*((k*(k+1)/2)**1))/(2*k+1)
let mut ni = n;
// ni1 := ni0 * ((n * ni0 - 3) * (n * ni0) + 3); // = (1+(2**9)*((k*(k+1)/2)**3))/(2*k+1)
// ni2 := ni1 * ((n * ni1 - 3) * (n * ni1) + 3); // = (1+(2**27)*((k*(k+1)/2)**9))/(2*k+1)
// ni3 := ni2 * ((n * ni2 - 3) * (n * ni2) + 3); // = (1+(2**81)*((k*(k+1)/2)**27))/(2*k+1)
// // (n * ni3) mod 2**64 = ((2*k+1) * ni3) mod 2**64 = 1 mod 2**64
for _ in 0..3 {
let t = n.wrapping_mul(ni);
ni = t.wrapping_sub(3).wrapping_mul(t).wrapping_add(3).wrapping_mul(ni);
}
debug_assert_eq!(n.wrapping_mul(ni), 1); // n * ni == 1 (mod 2**64)
let r: u64 = n.wrapping_neg() % n; // == 2**64 (mod n)
let rn: u64 = n - r; // == -1 * (2**64) (mod n)
let r2: u64 = ((n as u128).wrapping_neg() % (n as u128)) as u64; // == 2**128 (mod n)
// n == 2**k * d + 1
let mut d = n - 1;
let k = d.trailing_zeros();
d >>= k;
debug_assert_eq!(Self { n, ni, r, rn, r2, d, k }.mr(r), 1); // r / r == 1 (mod n)
debug_assert_eq!(Self { n, ni, r, rn, r2, d, k }.mrmul(1, r2), r); // r2 / r == r (mod n)
Self { n, ni, r, rn, r2, d, k }
}
#[inline]
fn add(&self, a: u64, b: u64) -> u64 {
// addmod(a, b) == a + b (mod n)
debug_assert!(a < self.n());
debug_assert!(b < self.n());
let (t, fa) = a.overflowing_add(b);
let (u, fs) = t.overflowing_sub(self.n());
if fa || !fs { u } else { t }
}
#[inline]
fn sub(&self, a: u64, b: u64) -> u64 {
// submod(a, b) == a - b (mod n)
debug_assert!(a < self.n());
debug_assert!(b < self.n());
let (t, f) = a.overflowing_sub(b);
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn mrmul(&self, ar: u64, br: u64) -> u64 {
// mrmul(ar, br) == (ar * br) / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// 0 <= br < N < R
// T := ar * br
// t := floor(T / R) - floor(((T * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
debug_assert!(ar < self.n());
debug_assert!(br < self.n());
let t: u128 = (ar as u128) * (br as u128);
let (t, f) = ((t >> 64) as u64).overflowing_sub((((((t as u64).wrapping_mul(self.ni())) as u128) * (self.n() as u128)) >> 64) as u64);
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn mr(&self, ar: u64) -> u64 {
// mr(ar) == ar / r (mod n)
// R == 2**64
// gcd(N, R) == 1
// N * ni mod R == 1
// 0 <= ar < N < R
// t := floor(ar / R) - floor(((ar * ni mod R) * N) / R)
// if t < 0 then return t + N else return t
debug_assert!(ar < self.n());
let (t, f) = (((((ar.wrapping_mul(self.ni())) as u128) * (self.n() as u128)) >> 64) as u64).overflowing_neg();
if f { t.wrapping_add(self.n()) } else { t }
}
#[inline]
fn ar(&self, a: u64) -> u64 {
// ar(a) == a * r (mod n)
debug_assert!(a < self.n());
self.mrmul(a, self.r2())
}
#[inline]
fn pow(&self, mut ar: u64, mut b: u64) -> u64 {
// powir(ar, b) == ((ar / r) ** b) * r (mod n)
debug_assert!(ar < self.n());
let mut t = if (b & 1) == 0 { self.r } else { ar };
loop {
b >>= 1;
if b == 0 { return t; }
ar = self.mrmul(ar, ar);
if (b & 1) != 0 { t = self.mrmul(t, ar); }
}
}
}
#[inline]
fn prime_test_miller_sub(mont: &Mont<u64>, mut base: u64) -> bool {
// Mirrer-Rabin primality test
if base >= mont.n() { base %= mont.n(); if base == 0 { return true; } }
let mut tr = mont.pow(mont.ar(base), mont.d());
if tr == mont.r() || tr == mont.rn() { return true; }
for _ in 1..(mont.k()) { tr = mont.mrmul(tr, tr); if tr == mont.rn() { return true; } }
false
}
pub fn miller_rabin(n: u64) -> bool {
if n == 2 { return true; }
if n < 2 || (n & 1) == 0 { return false; }
let mont = Mont::<u64>::new(n);
[2,325,9375,28178,450775,9780504,1795265022].iter().all(|&base| prime_test_miller_sub(&mont, base))
}
fn main() {
use std::io::{BufRead,Write};
let start_time = std::time::Instant::now();
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
let input = std::io::stdin();
let mut lines = std::io::BufReader::new(input.lock()).lines();
let n: usize = lines.next().unwrap().unwrap().parse().unwrap();
for _ in 0..n {
let x: u64 = lines.next().unwrap().unwrap().parse().unwrap();
puts!("{} {}\n", x, if miller_rabin(x) { "1" } else { "0" });
}
eprint!("{}us\n", start_time.elapsed().as_micros());
}