結果
問題 | No.811 約数の個数の最大化 |
ユーザー | vwxyz |
提出日時 | 2022-09-22 05:29:37 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 139 ms / 2,000 ms |
コード長 | 3,670 bytes |
コンパイル時間 | 94 ms |
コンパイル使用メモリ | 13,184 KB |
実行使用メモリ | 15,048 KB |
最終ジャッジ日時 | 2024-06-01 17:46:32 |
合計ジャッジ時間 | 2,081 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
12,160 KB |
testcase_01 | AC | 43 ms
12,160 KB |
testcase_02 | AC | 138 ms
14,720 KB |
testcase_03 | AC | 42 ms
12,160 KB |
testcase_04 | AC | 43 ms
12,288 KB |
testcase_05 | AC | 45 ms
12,288 KB |
testcase_06 | AC | 51 ms
12,416 KB |
testcase_07 | AC | 55 ms
12,544 KB |
testcase_08 | AC | 91 ms
13,312 KB |
testcase_09 | AC | 85 ms
13,440 KB |
testcase_10 | AC | 78 ms
13,220 KB |
testcase_11 | AC | 116 ms
14,720 KB |
testcase_12 | AC | 69 ms
12,672 KB |
testcase_13 | AC | 139 ms
15,032 KB |
testcase_14 | AC | 136 ms
15,048 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 def Divisor_Counts(N): divisor_counts=[float('inf')]+[1]*N for p in range(2,N+1): if divisor_counts[p]!=1: continue pp=p e=1 while pp<=N: for i in range(pp,N+1,pp): divisor_counts[i]+=divisor_counts[i]//e e+=1 pp*=p return divisor_counts N,K=map(int,readline().split()) P=Prime(N) DC=Divisor_Counts(N) cnt=[0]*(N+1) for p,e in P.Factorize(N).items(): for i in range(1,e+1): for n in range(p**i,N+1,p**i): cnt[n]+=1 m=max(DC[M] for M in range(1,N) if cnt[M]>=K) for M in range(1,N): if cnt[M]>=K and DC[M]==m: break print(M)