結果
問題 | No.407 鴨等素数間隔列の数え上げ |
ユーザー | vwxyz |
提出日時 | 2022-09-22 06:59:55 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 789 ms / 1,000 ms |
コード長 | 3,108 bytes |
コンパイル時間 | 379 ms |
コンパイル使用メモリ | 82,728 KB |
実行使用メモリ | 220,500 KB |
最終ジャッジ日時 | 2024-05-19 16:43:47 |
合計ジャッジ時間 | 11,698 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 150 ms
89,704 KB |
testcase_01 | AC | 145 ms
89,480 KB |
testcase_02 | AC | 146 ms
89,824 KB |
testcase_03 | AC | 191 ms
101,668 KB |
testcase_04 | AC | 147 ms
89,640 KB |
testcase_05 | AC | 789 ms
220,500 KB |
testcase_06 | AC | 382 ms
156,008 KB |
testcase_07 | AC | 144 ms
89,696 KB |
testcase_08 | AC | 142 ms
89,600 KB |
testcase_09 | AC | 145 ms
89,792 KB |
testcase_10 | AC | 142 ms
89,392 KB |
testcase_11 | AC | 146 ms
89,352 KB |
testcase_12 | AC | 152 ms
90,056 KB |
testcase_13 | AC | 156 ms
90,420 KB |
testcase_14 | AC | 154 ms
90,332 KB |
testcase_15 | AC | 141 ms
89,556 KB |
testcase_16 | AC | 149 ms
89,996 KB |
testcase_17 | AC | 146 ms
89,936 KB |
testcase_18 | AC | 143 ms
89,824 KB |
testcase_19 | AC | 187 ms
102,008 KB |
testcase_20 | AC | 283 ms
128,364 KB |
testcase_21 | AC | 206 ms
106,144 KB |
testcase_22 | AC | 190 ms
103,628 KB |
testcase_23 | AC | 237 ms
114,044 KB |
testcase_24 | AC | 281 ms
128,584 KB |
testcase_25 | AC | 376 ms
153,948 KB |
testcase_26 | AC | 381 ms
154,232 KB |
testcase_27 | AC | 178 ms
98,552 KB |
testcase_28 | AC | 240 ms
117,148 KB |
testcase_29 | AC | 371 ms
152,724 KB |
testcase_30 | AC | 183 ms
100,084 KB |
testcase_31 | AC | 407 ms
145,888 KB |
testcase_32 | AC | 372 ms
153,400 KB |
testcase_33 | AC | 604 ms
214,412 KB |
testcase_34 | AC | 601 ms
214,392 KB |
testcase_35 | AC | 571 ms
206,520 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 N,L=map(int,readline().split()) P=Prime(L) ans=0 for d in P.primes: ans+=max(0,L-d*(N-1)+1) print(ans)