結果
問題 | No.800 四平方定理 |
ユーザー | vwxyz |
提出日時 | 2022-09-22 15:31:03 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,232 bytes |
コンパイル時間 | 90 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 80,256 KB |
最終ジャッジ日時 | 2024-06-01 17:56:42 |
合計ジャッジ時間 | 46,394 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 451 ms
80,000 KB |
testcase_01 | AC | 462 ms
79,944 KB |
testcase_02 | AC | 469 ms
80,068 KB |
testcase_03 | AC | 464 ms
80,256 KB |
testcase_04 | AC | 457 ms
80,128 KB |
testcase_05 | AC | 460 ms
80,224 KB |
testcase_06 | AC | 477 ms
80,128 KB |
testcase_07 | AC | 458 ms
80,148 KB |
testcase_08 | AC | 462 ms
80,128 KB |
testcase_09 | AC | 473 ms
80,064 KB |
testcase_10 | AC | 1,497 ms
79,952 KB |
testcase_11 | AC | 1,664 ms
80,128 KB |
testcase_12 | AC | 1,612 ms
80,044 KB |
testcase_13 | AC | 1,569 ms
80,000 KB |
testcase_14 | AC | 1,668 ms
80,160 KB |
testcase_15 | AC | 1,654 ms
80,140 KB |
testcase_16 | AC | 1,702 ms
80,068 KB |
testcase_17 | AC | 1,712 ms
80,116 KB |
testcase_18 | AC | 1,645 ms
80,128 KB |
testcase_19 | AC | 1,630 ms
80,128 KB |
testcase_20 | AC | 419 ms
80,128 KB |
testcase_21 | AC | 423 ms
80,128 KB |
testcase_22 | AC | 1,678 ms
79,948 KB |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | AC | 439 ms
80,052 KB |
testcase_27 | AC | 430 ms
80,108 KB |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 P=Prime(10**6) N,D=map(int,readline().split()) cnt=[0]*(7*10**6+1) for i in range(1,N+1): for j in range(i,N+1): cnt[(i+j)*(j-i)]+=1 ans=sum(cnt[abs(D-x**2-y**2)] for x in range(1,N+1) for y in range(1,N+1)) print(ans)