結果
問題 | No.1324 Approximate the Matrix |
ユーザー | tokusakurai |
提出日時 | 2022-09-28 18:29:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 87 ms / 2,000 ms |
コード長 | 7,194 bytes |
コンパイル時間 | 3,250 ms |
コンパイル使用メモリ | 219,852 KB |
実行使用メモリ | 6,784 KB |
最終ジャッジ日時 | 2024-12-22 17:39:06 |
合計ジャッジ時間 | 5,899 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 51 ms
5,248 KB |
testcase_04 | AC | 45 ms
5,248 KB |
testcase_05 | AC | 51 ms
5,248 KB |
testcase_06 | AC | 49 ms
5,248 KB |
testcase_07 | AC | 47 ms
5,248 KB |
testcase_08 | AC | 5 ms
5,248 KB |
testcase_09 | AC | 4 ms
5,248 KB |
testcase_10 | AC | 7 ms
5,248 KB |
testcase_11 | AC | 12 ms
5,248 KB |
testcase_12 | AC | 5 ms
5,248 KB |
testcase_13 | AC | 4 ms
5,248 KB |
testcase_14 | AC | 13 ms
5,248 KB |
testcase_15 | AC | 7 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 12 ms
5,248 KB |
testcase_18 | AC | 5 ms
5,248 KB |
testcase_19 | AC | 5 ms
5,248 KB |
testcase_20 | AC | 3 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 4 ms
5,248 KB |
testcase_23 | AC | 13 ms
5,248 KB |
testcase_24 | AC | 19 ms
5,248 KB |
testcase_25 | AC | 14 ms
5,248 KB |
testcase_26 | AC | 12 ms
5,248 KB |
testcase_27 | AC | 7 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 83 ms
6,528 KB |
testcase_38 | AC | 87 ms
6,784 KB |
testcase_39 | AC | 82 ms
6,528 KB |
testcase_40 | AC | 82 ms
6,528 KB |
testcase_41 | AC | 83 ms
6,528 KB |
testcase_42 | AC | 6 ms
5,248 KB |
testcase_43 | AC | 6 ms
5,248 KB |
testcase_44 | AC | 5 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template <typename F, typename T = F> struct Primal_Dual { struct edge { int to; F cap; T cost; int rev; edge(int to, F cap, T cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; vector<vector<edge>> es; vector<T> d, h; vector<int> pre_v, pre_e; bool negative = false; const F zero_F, INF_F; const T zero_T, INF_T; const int n; Primal_Dual(int n, F zero_F = 0, F INF_F = numeric_limits<F>::max() / 2, T zero_T = 0, T INF_T = numeric_limits<T>::max() / 2) : es(n), d(n), h(n), pre_v(n), pre_e(n), zero_F(zero_F), INF_F(INF_F), zero_T(zero_T), INF_T(INF_T), n(n) {} void add_edge(int from, int to, F cap, T cost) { es[from].emplace_back(to, cap, cost, (int)es[to].size()); es[to].emplace_back(from, zero_F, -cost, (int)es[from].size() - 1); if (cost < zero_T) negative = true; } void bellman_ford(int s) { fill(begin(h), end(h), INF_T); h[s] = zero_T; while (true) { bool update = false; for (int i = 0; i < n; i++) { if (h[i] == INF_T) continue; for (auto &e : es[i]) { if (e.cap > zero_F && h[i] + e.cost < h[e.to]) { h[e.to] = h[i] + e.cost; update = true; } } } if (!update) break; } } void dag_shortest_path(int s) { vector<int> deg(n, 0); for (int i = 0; i < n; i++) { for (auto &e : es[i]) { if (e.cap > zero_F) deg[e.to]++; } } fill(begin(h), end(h), INF_T); h[s] = zero_T; queue<int> que; for (int i = 0; i < n; i++) { if (deg[i] == 0) que.push(i); } while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { if (e.cap == zero_F) continue; h[e.to] = min(h[e.to], h[i] + e.cost); if (--deg[e.to] == 0) que.push(e.to); } } } void dijkstra(int s) { fill(begin(d), end(d), INF_T); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; que.emplace(d[s] = zero_T, s); while (!que.empty()) { auto [p, i] = que.top(); que.pop(); if (p > d[i]) continue; for (int j = 0; j < (int)es[i].size(); j++) { edge &e = es[i][j]; if (e.cap > zero_F && d[i] + e.cost + h[i] - h[e.to] < d[e.to]) { d[e.to] = d[i] + e.cost + h[i] - h[e.to]; pre_v[e.to] = i, pre_e[e.to] = j; que.emplace(d[e.to], e.to); } } } } T min_cost_flow(int s, int t, F flow, bool dag = false) { T ret = zero_T; if (negative) dag ? dag_shortest_path(s) : bellman_ford(s); while (flow > zero_F) { dijkstra(s); if (d[t] == INF_T) return INF_T; for (int i = 0; i < n; i++) { if (h[i] == INF_T || d[i] == INF_T) { h[i] = INF_T; } else { h[i] += d[i]; } } F f = flow; for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap); ret += h[t] * f, flow -= f; for (int now = t; now != s; now = pre_v[now]) { edge &e = es[pre_v[now]][pre_e[now]]; e.cap -= f, es[now][e.rev].cap += f; } } return ret; } }; int main() { int N, K; cin >> N >> K; Primal_Dual<ll, ll> G(2 * N + 2); int s = 2 * N, t = s + 1; vector<int> a(N), b(N); rep(i, N) { cin >> a[i]; G.add_edge(s, i, a[i], 0); } rep(i, N) { cin >> b[i]; G.add_edge(N + i, t, b[i], 0); } ll ans = 0; rep(i, N) { rep(j, N) { int x; cin >> x; ans += x * x; rep(k, min(a[i], b[j])) G.add_edge(i, N + j, 1, 1 - 2 * (x - k)); } } cout << ans + G.min_cost_flow(s, t, K) << '\n'; }