結果
| 問題 |
No.1324 Approximate the Matrix
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-09-28 18:29:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 86 ms / 2,000 ms |
| コード長 | 7,194 bytes |
| コンパイル時間 | 2,612 ms |
| コンパイル使用メモリ | 212,500 KB |
| 最終ジャッジ日時 | 2025-02-07 17:59:57 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <typename F, typename T = F>
struct Primal_Dual {
struct edge {
int to;
F cap;
T cost;
int rev;
edge(int to, F cap, T cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {}
};
vector<vector<edge>> es;
vector<T> d, h;
vector<int> pre_v, pre_e;
bool negative = false;
const F zero_F, INF_F;
const T zero_T, INF_T;
const int n;
Primal_Dual(int n, F zero_F = 0, F INF_F = numeric_limits<F>::max() / 2, T zero_T = 0, T INF_T = numeric_limits<T>::max() / 2)
: es(n), d(n), h(n), pre_v(n), pre_e(n), zero_F(zero_F), INF_F(INF_F), zero_T(zero_T), INF_T(INF_T), n(n) {}
void add_edge(int from, int to, F cap, T cost) {
es[from].emplace_back(to, cap, cost, (int)es[to].size());
es[to].emplace_back(from, zero_F, -cost, (int)es[from].size() - 1);
if (cost < zero_T) negative = true;
}
void bellman_ford(int s) {
fill(begin(h), end(h), INF_T);
h[s] = zero_T;
while (true) {
bool update = false;
for (int i = 0; i < n; i++) {
if (h[i] == INF_T) continue;
for (auto &e : es[i]) {
if (e.cap > zero_F && h[i] + e.cost < h[e.to]) {
h[e.to] = h[i] + e.cost;
update = true;
}
}
}
if (!update) break;
}
}
void dag_shortest_path(int s) {
vector<int> deg(n, 0);
for (int i = 0; i < n; i++) {
for (auto &e : es[i]) {
if (e.cap > zero_F) deg[e.to]++;
}
}
fill(begin(h), end(h), INF_T);
h[s] = zero_T;
queue<int> que;
for (int i = 0; i < n; i++) {
if (deg[i] == 0) que.push(i);
}
while (!que.empty()) {
int i = que.front();
que.pop();
for (auto &e : es[i]) {
if (e.cap == zero_F) continue;
h[e.to] = min(h[e.to], h[i] + e.cost);
if (--deg[e.to] == 0) que.push(e.to);
}
}
}
void dijkstra(int s) {
fill(begin(d), end(d), INF_T);
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
que.emplace(d[s] = zero_T, s);
while (!que.empty()) {
auto [p, i] = que.top();
que.pop();
if (p > d[i]) continue;
for (int j = 0; j < (int)es[i].size(); j++) {
edge &e = es[i][j];
if (e.cap > zero_F && d[i] + e.cost + h[i] - h[e.to] < d[e.to]) {
d[e.to] = d[i] + e.cost + h[i] - h[e.to];
pre_v[e.to] = i, pre_e[e.to] = j;
que.emplace(d[e.to], e.to);
}
}
}
}
T min_cost_flow(int s, int t, F flow, bool dag = false) {
T ret = zero_T;
if (negative) dag ? dag_shortest_path(s) : bellman_ford(s);
while (flow > zero_F) {
dijkstra(s);
if (d[t] == INF_T) return INF_T;
for (int i = 0; i < n; i++) {
if (h[i] == INF_T || d[i] == INF_T) {
h[i] = INF_T;
} else {
h[i] += d[i];
}
}
F f = flow;
for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap);
ret += h[t] * f, flow -= f;
for (int now = t; now != s; now = pre_v[now]) {
edge &e = es[pre_v[now]][pre_e[now]];
e.cap -= f, es[now][e.rev].cap += f;
}
}
return ret;
}
};
int main() {
int N, K;
cin >> N >> K;
Primal_Dual<ll, ll> G(2 * N + 2);
int s = 2 * N, t = s + 1;
vector<int> a(N), b(N);
rep(i, N) {
cin >> a[i];
G.add_edge(s, i, a[i], 0);
}
rep(i, N) {
cin >> b[i];
G.add_edge(N + i, t, b[i], 0);
}
ll ans = 0;
rep(i, N) {
rep(j, N) {
int x;
cin >> x;
ans += x * x;
rep(k, min(a[i], b[j])) G.add_edge(i, N + j, 1, 1 - 2 * (x - k));
}
}
cout << ans + G.min_cost_flow(s, t, K) << '\n';
}