結果
| 問題 |
No.1600 Many Shortest Path Problems
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-09-29 10:33:51 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,092 bytes |
| コンパイル時間 | 3,152 ms |
| コンパイル使用メモリ | 227,244 KB |
| 最終ジャッジ日時 | 2025-02-07 18:14:23 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 WA * 34 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <bool directed = false>
struct Euler_Tour_Subtree {
struct edge {
int to, id;
edge(int to, int id) : to(to), id(id) {}
};
vector<vector<edge>> es;
vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。
const int n;
int m;
Euler_Tour_Subtree(int n) : es(n), l(n), r(n), n(n), m(0) {}
void add_edge(int from, int to) {
es[from].emplace_back(to, m);
if (!directed) es[to].emplace_back(from, m);
m++;
}
void _dfs(int now, int pre, int &cnt) {
l[now] = cnt++;
for (auto &e : es[now]) {
if (e.to != pre) _dfs(e.to, now, cnt);
}
r[now] = cnt;
}
void build(int root = 0) {
int cnt = 0;
_dfs(root, -1, cnt);
}
};
template <typename Operator_Monoid>
struct Dual_Segment_Tree {
using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>;
int n, height;
vector<Operator_Monoid> lazy;
const H h;
const Operator_Monoid e2;
Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) {
n = 1, height = 0;
while (n < m) n <<= 1, height++;
lazy.assign(2 * n, e2);
}
inline void eval(int i) {
if (i < n && lazy[i] != e2) {
lazy[2 * i] = h(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]);
lazy[i] = e2;
}
}
inline void thrust(int i) {
for (int j = height; j > 0; j--) eval(i >> j);
}
void apply(int l, int r, const Operator_Monoid &x) {
l = max(l, 0), r = min(r, n);
if (l >= r) return;
l += n, r += n;
thrust(l), thrust(r - 1);
while (l < r) {
if (l & 1) lazy[l] = h(lazy[l], x), l++;
if (r & 1) r--, lazy[r] = h(lazy[r], x);
l >>= 1, r >>= 1;
}
}
Operator_Monoid get(int i) {
thrust(i + n);
return lazy[i + n];
}
Operator_Monoid operator[](int i) { return get(i); }
};
template <typename T, bool directed = false>
struct Heavy_Light_Decomposition {
struct edge {
int to, id;
T cost;
edge(int to, int id, T cost) : to(to), id(id), cost(cost) {}
};
vector<vector<edge>> es;
vector<int> par, si, depth;
vector<int> root; // 属する連結成分の根
vector<int> id_v, id_e; // 各頂点、各辺が一列に並べたときに何番目に相当するか (辺の番号は 1,2,...,n-1 となることに注意)
vector<int> vs;
const int n;
int m;
vector<T> d;
Heavy_Light_Decomposition(int n) : es(n), par(n), si(n), depth(n), root(n), id_v(n), id_e(n - 1), vs(n), n(n), m(0), d(n, 0) {}
void add_edge(int from, int to, T cost) {
es[from].emplace_back(to, m, cost);
if (!directed) es[to].emplace_back(from, m, cost);
m++;
}
int _dfs1(int now, int pre = -1) {
par[now] = pre;
if (pre == -1) depth[now] = 0;
si[now] = 1;
for (auto &e : es[now]) {
if (e.to != pre) {
depth[e.to] = depth[now] + 1;
d[e.to] = d[now] + e.cost;
si[now] += _dfs1(e.to, now);
}
}
return si[now];
}
void _dfs2(int now, bool st, int &s, int pre = -1) {
root[now] = (st ? now : root[pre]);
id_v[now] = s++;
vs[id_v[now]] = now;
edge heavy = {-1, -1, 0};
int M = 0;
for (auto &e : es[now]) {
if (e.to == pre) continue;
if (M < si[e.to]) M = si[e.to], heavy = e;
}
if (heavy.id != -1) {
id_e[heavy.id] = s;
_dfs2(heavy.to, false, s, now);
}
for (auto &e : es[now]) {
if (e.to != pre && e.id != heavy.id) {
id_e[e.id] = s;
_dfs2(e.to, true, s, now);
}
}
}
void decompose(int root = 0) {
_dfs1(root);
int s = 0;
_dfs2(root, true, s);
}
int lca(int u, int v) {
while (root[u] != root[v]) {
if (depth[root[u]] > depth[root[v]]) swap(u, v);
v = par[root[v]];
}
if (depth[u] > depth[v]) swap(u, v);
return u;
}
T dist(int u, int v) { return d[u] + d[v] - d[lca(u, v)] * 2; }
// u の k 個前の祖先
int ancestor(int u, int k) {
if (k > depth[u]) return -1;
while (k > 0) {
int r = root[u];
int l = depth[u] - depth[r];
if (k <= l) return vs[id_v[r] + l - k];
u = par[r];
k -= l + 1;
}
return u;
}
// u から v の方向へ k 回移動
int move(int u, int v, int k) {
int w = lca(u, v);
int l = depth[u] + depth[v] - depth[w] * 2;
if (k > l) return -1;
if (k <= depth[u] - depth[w]) return ancestor(u, k);
return ancestor(v, l - k);
}
// パスに対応する区間たちを列挙
vector<pair<int, int>> get_path(int u, int v, bool use_edge = false) {
vector<pair<int, int>> ret;
while (root[u] != root[v]) {
if (depth[root[u]] > depth[root[v]]) swap(u, v);
ret.emplace_back(id_v[root[v]], id_v[v] + 1);
v = par[root[v]];
}
if (depth[u] > depth[v]) swap(u, v);
ret.emplace_back(id_v[u] + use_edge, id_v[v] + 1);
return ret;
}
// クエリが非可換の場合
vector<pair<int, int>> get_path_noncommutative(int u, int v, bool use_edge = false) {
vector<pair<int, int>> l, r;
while (root[u] != root[v]) {
if (depth[root[u]] > depth[root[v]]) {
l.emplace_back(id_v[u] + 1, id_v[root[u]]);
u = par[root[u]];
} else {
r.emplace_back(id_v[root[v]], id_v[v] + 1);
v = par[root[v]];
}
}
if (depth[u] > depth[v]) {
l.emplace_back(id_v[u] + 1, id_v[v] + use_edge);
} else {
r.emplace_back(id_v[u] + use_edge, id_v[v] + 1);
}
reverse(begin(r), end(r));
for (auto &e : r) l.push_back(e);
return l;
}
};
int main() {
int N, M;
cin >> N >> M;
vector<int> u(M), v(M);
Union_Find_Tree uf(N);
Heavy_Light_Decomposition<mint> G1(N);
Euler_Tour_Subtree G2(N);
vector<mint> pw(M + 1, 1);
rep(i, M) pw[i + 1] = pw[i] * 2;
vector<bool> used(M, false);
vector<int> rem;
rep(i, M) {
cin >> u[i] >> v[i];
u[i]--, v[i]--;
if (uf.unite(u[i], v[i])) {
G1.add_edge(u[i], v[i], pw[i]);
G2.add_edge(u[i], v[i]);
used[i] = true;
} else {
rem.eb(i);
}
}
G1.decompose();
G2.build();
auto f = [](int x, int y) { return min(x, y); };
Dual_Segment_Tree<int> seg(N, f, inf);
each(e, rem) {
int w = G1.lca(u[e], v[e]);
if (u[e] != w) {
int s = u[e], t = G1.ancestor(s, G1.depth[s] - G1.depth[w] - 1);
auto ps = G1.get_path(s, t);
for (auto [l, r] : ps) seg.apply(l, r, e);
}
if (v[e] != w) {
int s = v[e], t = G1.ancestor(s, G1.depth[s] - G1.depth[w] - 1);
auto ps = G1.get_path(s, t);
for (auto [l, r] : ps) seg.apply(l, r, e);
}
}
int Q;
cin >> Q;
while (Q--) {
int s, t, ng;
cin >> s >> t >> ng;
s--, t--, ng--;
int x = (G1.depth[u[ng]] > G1.depth[v[ng]] ? u[ng] : v[ng]);
int c1 = 0, c2 = 0;
if (G2.l[x] <= G2.l[s] && G2.l[s] < G2.r[x]) c1++;
if (G2.l[x] <= G2.l[t] && G2.l[t] < G2.r[x]) c2++;
if (!used[ng] || c1 + c2 != 1) {
cout << G1.dist(s, t) * 2 << '\n';
} else {
int id = min(seg[G1.id_v[s]], seg[G1.id_v[t]]);
if (id == inf) {
cout << "-1\n";
} else {
if (c1 == 0) swap(s, t);
if (G2.l[x] <= G2.l[u[id]] && G2.l[u[id]] < G2.r[x]) {
cout << (G1.dist(s, u[id]) + pw[id] + G1.dist(v[id], t)) * 2 << '\n';
} else {
cout << (G1.dist(s, v[id]) + pw[id] + G1.dist(u[id], t)) * 2 << '\n';
}
}
}
}
}