結果
問題 | No.1600 Many Shortest Path Problems |
ユーザー | tokusakurai |
提出日時 | 2022-09-29 10:33:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 14,092 bytes |
コンパイル時間 | 2,905 ms |
コンパイル使用メモリ | 235,464 KB |
実行使用メモリ | 49,088 KB |
最終ジャッジ日時 | 2024-06-02 01:58:30 |
合計ジャッジ時間 | 17,345 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | WA | - |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 2 ms
5,376 KB |
testcase_53 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; struct Union_Find_Tree { vector<int> data; const int n; int cnt; Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {} int root(int x) { if (data[x] < 0) return x; return data[x] = root(data[x]); } int operator[](int i) { return root(i); } bool unite(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y], data[y] = x; cnt--; return true; } int size(int x) { return -data[root(x)]; } int count() { return cnt; }; bool same(int x, int y) { return root(x) == root(y); } void clear() { cnt = n; fill(begin(data), end(data), -1); } }; template <bool directed = false> struct Euler_Tour_Subtree { struct edge { int to, id; edge(int to, int id) : to(to), id(id) {} }; vector<vector<edge>> es; vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。 const int n; int m; Euler_Tour_Subtree(int n) : es(n), l(n), r(n), n(n), m(0) {} void add_edge(int from, int to) { es[from].emplace_back(to, m); if (!directed) es[to].emplace_back(from, m); m++; } void _dfs(int now, int pre, int &cnt) { l[now] = cnt++; for (auto &e : es[now]) { if (e.to != pre) _dfs(e.to, now, cnt); } r[now] = cnt; } void build(int root = 0) { int cnt = 0; _dfs(root, -1, cnt); } }; template <typename Operator_Monoid> struct Dual_Segment_Tree { using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>; int n, height; vector<Operator_Monoid> lazy; const H h; const Operator_Monoid e2; Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) { n = 1, height = 0; while (n < m) n <<= 1, height++; lazy.assign(2 * n, e2); } inline void eval(int i) { if (i < n && lazy[i] != e2) { lazy[2 * i] = h(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]); lazy[i] = e2; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void apply(int l, int r, const Operator_Monoid &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += n, r += n; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = h(lazy[l], x), l++; if (r & 1) r--, lazy[r] = h(lazy[r], x); l >>= 1, r >>= 1; } } Operator_Monoid get(int i) { thrust(i + n); return lazy[i + n]; } Operator_Monoid operator[](int i) { return get(i); } }; template <typename T, bool directed = false> struct Heavy_Light_Decomposition { struct edge { int to, id; T cost; edge(int to, int id, T cost) : to(to), id(id), cost(cost) {} }; vector<vector<edge>> es; vector<int> par, si, depth; vector<int> root; // 属する連結成分の根 vector<int> id_v, id_e; // 各頂点、各辺が一列に並べたときに何番目に相当するか (辺の番号は 1,2,...,n-1 となることに注意) vector<int> vs; const int n; int m; vector<T> d; Heavy_Light_Decomposition(int n) : es(n), par(n), si(n), depth(n), root(n), id_v(n), id_e(n - 1), vs(n), n(n), m(0), d(n, 0) {} void add_edge(int from, int to, T cost) { es[from].emplace_back(to, m, cost); if (!directed) es[to].emplace_back(from, m, cost); m++; } int _dfs1(int now, int pre = -1) { par[now] = pre; if (pre == -1) depth[now] = 0; si[now] = 1; for (auto &e : es[now]) { if (e.to != pre) { depth[e.to] = depth[now] + 1; d[e.to] = d[now] + e.cost; si[now] += _dfs1(e.to, now); } } return si[now]; } void _dfs2(int now, bool st, int &s, int pre = -1) { root[now] = (st ? now : root[pre]); id_v[now] = s++; vs[id_v[now]] = now; edge heavy = {-1, -1, 0}; int M = 0; for (auto &e : es[now]) { if (e.to == pre) continue; if (M < si[e.to]) M = si[e.to], heavy = e; } if (heavy.id != -1) { id_e[heavy.id] = s; _dfs2(heavy.to, false, s, now); } for (auto &e : es[now]) { if (e.to != pre && e.id != heavy.id) { id_e[e.id] = s; _dfs2(e.to, true, s, now); } } } void decompose(int root = 0) { _dfs1(root); int s = 0; _dfs2(root, true, s); } int lca(int u, int v) { while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) swap(u, v); v = par[root[v]]; } if (depth[u] > depth[v]) swap(u, v); return u; } T dist(int u, int v) { return d[u] + d[v] - d[lca(u, v)] * 2; } // u の k 個前の祖先 int ancestor(int u, int k) { if (k > depth[u]) return -1; while (k > 0) { int r = root[u]; int l = depth[u] - depth[r]; if (k <= l) return vs[id_v[r] + l - k]; u = par[r]; k -= l + 1; } return u; } // u から v の方向へ k 回移動 int move(int u, int v, int k) { int w = lca(u, v); int l = depth[u] + depth[v] - depth[w] * 2; if (k > l) return -1; if (k <= depth[u] - depth[w]) return ancestor(u, k); return ancestor(v, l - k); } // パスに対応する区間たちを列挙 vector<pair<int, int>> get_path(int u, int v, bool use_edge = false) { vector<pair<int, int>> ret; while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) swap(u, v); ret.emplace_back(id_v[root[v]], id_v[v] + 1); v = par[root[v]]; } if (depth[u] > depth[v]) swap(u, v); ret.emplace_back(id_v[u] + use_edge, id_v[v] + 1); return ret; } // クエリが非可換の場合 vector<pair<int, int>> get_path_noncommutative(int u, int v, bool use_edge = false) { vector<pair<int, int>> l, r; while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) { l.emplace_back(id_v[u] + 1, id_v[root[u]]); u = par[root[u]]; } else { r.emplace_back(id_v[root[v]], id_v[v] + 1); v = par[root[v]]; } } if (depth[u] > depth[v]) { l.emplace_back(id_v[u] + 1, id_v[v] + use_edge); } else { r.emplace_back(id_v[u] + use_edge, id_v[v] + 1); } reverse(begin(r), end(r)); for (auto &e : r) l.push_back(e); return l; } }; int main() { int N, M; cin >> N >> M; vector<int> u(M), v(M); Union_Find_Tree uf(N); Heavy_Light_Decomposition<mint> G1(N); Euler_Tour_Subtree G2(N); vector<mint> pw(M + 1, 1); rep(i, M) pw[i + 1] = pw[i] * 2; vector<bool> used(M, false); vector<int> rem; rep(i, M) { cin >> u[i] >> v[i]; u[i]--, v[i]--; if (uf.unite(u[i], v[i])) { G1.add_edge(u[i], v[i], pw[i]); G2.add_edge(u[i], v[i]); used[i] = true; } else { rem.eb(i); } } G1.decompose(); G2.build(); auto f = [](int x, int y) { return min(x, y); }; Dual_Segment_Tree<int> seg(N, f, inf); each(e, rem) { int w = G1.lca(u[e], v[e]); if (u[e] != w) { int s = u[e], t = G1.ancestor(s, G1.depth[s] - G1.depth[w] - 1); auto ps = G1.get_path(s, t); for (auto [l, r] : ps) seg.apply(l, r, e); } if (v[e] != w) { int s = v[e], t = G1.ancestor(s, G1.depth[s] - G1.depth[w] - 1); auto ps = G1.get_path(s, t); for (auto [l, r] : ps) seg.apply(l, r, e); } } int Q; cin >> Q; while (Q--) { int s, t, ng; cin >> s >> t >> ng; s--, t--, ng--; int x = (G1.depth[u[ng]] > G1.depth[v[ng]] ? u[ng] : v[ng]); int c1 = 0, c2 = 0; if (G2.l[x] <= G2.l[s] && G2.l[s] < G2.r[x]) c1++; if (G2.l[x] <= G2.l[t] && G2.l[t] < G2.r[x]) c2++; if (!used[ng] || c1 + c2 != 1) { cout << G1.dist(s, t) * 2 << '\n'; } else { int id = min(seg[G1.id_v[s]], seg[G1.id_v[t]]); if (id == inf) { cout << "-1\n"; } else { if (c1 == 0) swap(s, t); if (G2.l[x] <= G2.l[u[id]] && G2.l[u[id]] < G2.r[x]) { cout << (G1.dist(s, u[id]) + pw[id] + G1.dist(v[id], t)) * 2 << '\n'; } else { cout << (G1.dist(s, v[id]) + pw[id] + G1.dist(u[id], t)) * 2 << '\n'; } } } } }