結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | Jashinchan |
提出日時 | 2022-10-04 20:48:43 |
言語 | C (gcc 12.3.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 21,548 bytes |
コンパイル時間 | 1,651 ms |
コンパイル使用メモリ | 57,844 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-09 16:19:55 |
合計ジャッジ時間 | 3,245 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
ソースコード
// clang-format off #pragma region template #pragma GCC optimize("O3") #pragma GCC target("avx2") #pragma GCC optimize("fast-math") #pragma GCC optimize("unroll-loops") #define _GNU_SOURCE #include <assert.h> #include <inttypes.h> #include <limits.h> #include <math.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> typedef int8_t i8; typedef int16_t i16; typedef int32_t i32; typedef int64_t i64; typedef __int128_t i128; typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; typedef __uint128_t u128; typedef float f32; typedef double f64; typedef long double f80; #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define SWAP(a, b) \ do { \ (a) ^= (b); \ (b) ^= (a); \ (a) ^= (b); \ } \ while (0); #define CTZ32(a) ((a) ? __builtin_ctz((a)) : (32)) #define CTZ64(a) ((a) ? __builtin_ctzll((a)) : (64)) #define CLZ32(a) ((a) ? __builtin_clz((a)) : (32)) #define CLZ64(a) ((a) ? __builtin_clzll((a)) : (64)) #define POPCNT32(a) ((a) ? __builtin_popcount((a)) : (0)) #define POPCNT64(a) ((a) ? __builtin_popcountll((a)) : (0)) #define BIT_WIDTH32(a) ((32) - CLZ32((a))) #define BIT_WIDTH64(a) ((64) - CLZ64((a))) #define BIT_FLOOR32(a) ((a) ? ((1u) << (BIT_WIDTH32((a)) - (1))) : (0)) #define BIT_FLOOR64(a) ((a) ? ((1ul) << (BIT_WIDTH64((a)) - (1))) : (0)) #define BIT_CEIL32(a) (((a) <= 1) ? (1u) : ((1u) << BIT_WIDTH32((a) - (1)))) #define BIT_CEIL64(a) (((a) <= 1) ? (1ul) : ((1ul) << BIT_WIDTH64((a) - (1)))) #define LSBit(a) ((a) & (-(a))) #define CLSBit(a) ((a) & ((a) - (1))) #define HAS_SINGLE_BIT32(a) (((a) != (0)) && (CLSBit((a)) == (0))) #define HAS_SINGLE_BIT64(a) (((a) != (0)) && (CLSBit((a)) == (0))) #define _ROTL32_INNER(x, l) (((x) << (l)) | ((x) >> ((-l) & (31)))) #define _ROTR32_INNER(x, r) (((x) >> (r)) | ((x) << ((-r) & (31)))) #define _ROTL64_INNER(x, l) (((x) << (l)) | ((x) >> ((-l) & (63)))) #define _ROTR64_INNER(x, r) (((x) >> (r)) | ((x) << ((-r) & (63)))) #define ROTR32(x, r) (((r) < (0)) ? (_ROTL32_INNER((x), ((u64)(-r) % (32)))) : (_ROTR32_INNER((x), ((r) % (32))))) #define ROTL32(x, l) ROTR32((x), (-l)) #define ROTR64(x, r) (((r) < (0)) ? (_ROTL64_INNER((x), ((u64)(-r) % (64)))) : (_ROTR64_INNER((x), ((r) % (64))))) #define ROTL64(x, l) ROTR64((x), (-l)) i32 in_i32(void) { i32 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; } i64 in_i64(void) { i64 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; } i128 in_i128(void) { i128 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; } u32 in_u32(void) { u32 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } u64 in_u64(void) { u64 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } u128 in_u128(void) { u128 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } static inline void out_i32_inner(i32 x) { if (x >= 10) out_i32_inner(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void out_i32(i32 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } out_i32_inner(x); } static inline void out_i64_inner(i64 x) { if (x >= 10) out_i64_inner(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void out_i64(i64 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } out_i64_inner(x); } static inline void out_i128_inner(i128 x) { if (x >= 10) out_i128_inner(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void out_i128(i128 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } out_i128_inner(x); } void out_u32(u32 x) { if (x >= 10) out_u32(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void out_u64(u64 x) { if (x >= 10) out_u64(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void out_u128(u128 x) { if (x >= 10) out_u128(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } void NL(void) { putchar_unlocked('\n'); } void SP(void) { putchar_unlocked(' '); } void dump_i32(i32 x) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", x); } void dump_i64(i64 x) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", x); } void dump_u32(u32 x) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", x); } void dump_u64(u64 x) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", x); } void dump_i32_array(size_t a_len, i32 *a) { for (size_t i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m ", a[i]); } } } void dump_i64_array(size_t a_len, i64 *a) { for (size_t i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m ", a[i]); } } } void dump_u32_array(size_t a_len, u32 *a) { for (size_t i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m ", a[i]); } } } void dump_u64_array(size_t a_len, u64 *a) { for (size_t i = 0; i < a_len; i++) { if (i == a_len - 1) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m ", a[i]); } } } void dump_i32_array_range(size_t a_len, i32 *a, size_t l, size_t r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (size_t i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId32 "\033[0m ", a[i]); } } } void dump_i64_array_range(size_t a_len, i64 *a, size_t l, size_t r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (size_t i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRId64 "\033[0m ", a[i]); } } } void dump_u32_array_range(size_t a_len, u32 *a, size_t l, size_t r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (size_t i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu32 "\033[0m ", a[i]); } } } void dump_u64_array_range(size_t a_len, u64 *a, size_t l, size_t r) { if (a_len <= r) { r = a_len - 1; } if (l > r) { return; } for (size_t i = l; i <= r; i++) { if (i == r) { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m\n", a[i]); } else { fprintf(stderr, "\033[1;36m%" PRIu64 "\033[0m ", a[i]); } } } void printb_32bit(u32 v) { u32 mask = (u32)1 << (sizeof(v) * CHAR_BIT - 1); do { putchar_unlocked(mask & v ? '1' : '0'); } while (mask >>= 1); } void printb_64bit(u64 v) { u64 mask = (u64)1 << (sizeof(v) * CHAR_BIT - 1); do { putchar_unlocked(mask & v ? '1' : '0'); } while (mask >>= 1); } #pragma endregion template // clang-format on #pragma region gcd u32 gcd32(u32 a, u32 b) { if (!a || !b) return a | b; u32 sh = CTZ32(a | b); a >>= CTZ32(a); do { b >>= CTZ32(b); if (a > b) SWAP(a, b); b -= a; } while (b); return a << sh; } u64 gcd64(u64 a, u64 b) { if (!a || !b) return a | b; u64 sh = CTZ64(a | b); a >>= CTZ64(a); do { b >>= CTZ64(b); if (a > b) SWAP(a, b); b -= a; } while (b); return a << sh; } #pragma endregion gcd #pragma region mod inverse typedef struct { i32 f; i32 s; u32 t; } Bezout32; Bezout32 bezout32(u32 x, u32 y) { bool swap = x < y; if (swap) SWAP(x, y); if (y == 0) { if (x == 0) return (Bezout32){0, 0, 0}; else if (swap) return (Bezout32){0, 1, x}; else return (Bezout32){1, 0, x}; } i32 s0 = 1, s1 = 0, t0 = 0, t1 = 1; while (true) { u32 q = x / y, r = x % y; if (r == 0) { if (swap) return (Bezout32){t1, s1, y}; else return (Bezout32){s1, t1, y}; } i32 s2 = s0 - (i32)(q)*s1, t2 = t0 - (i32)(q)*t1; x = y, y = r; s0 = s1, s1 = s2, t0 = t1, t1 = t2; } } u32 mod_inverse32(u32 x, u32 mod) { assert(gcd32(x, mod) == 1); Bezout32 b = bezout32(x, mod); assert(b.t == 1); return b.f < 0 ? mod + b.f : (u32)b.f; } typedef struct { i64 f; i64 s; u64 t; } Bezout64; Bezout64 bezout64(u64 x, u64 y) { bool swap = x < y; if (swap) SWAP(x, y); if (y == 0) { if (x == 0) return (Bezout64){0, 0, 0}; else if (swap) return (Bezout64){0, 1, x}; else return (Bezout64){1, 0, x}; } i64 s0 = 1, s1 = 0, t0 = 0, t1 = 1; while (true) { u64 q = x / y, r = x % y; if (r == 0) { if (swap) return (Bezout64){t1, s1, y}; else return (Bezout64){s1, t1, y}; } i64 s2 = s0 - (i64)(q)*s1, t2 = t0 - (i64)(q)*t1; x = y, y = r; s0 = s1, s1 = s2, t0 = t1, t1 = t2; } } u64 mod_inverse64(u64 x, u64 mod) { assert(gcd64(x, mod) == 1); Bezout64 b = bezout64(x, mod); assert(b.t == 1); return b.f < 0 ? mod + b.f : (u64)b.f; } #pragma endregion mod inverse #pragma region quadratic residue int jacobi_symbol32(i32 a, i32 n) { int j = 1; while (a) { if (a < 0) { a = -a; if ((n & 3) == 3) j = -j; } int s = CTZ32(a); a >>= s; if (((n & 7) == 3 || (n & 7) == 5) && (s & 1)) j = -j; if ((a & n & 3) == 3) j = -j; SWAP(a, n); a %= n; if (a > n / 2) a -= n; } return n == 1 ? j : 0; } int jacobi_symbol64(i64 a, i64 n) { int j = 1; while (a) { if (a < 0) { a = -a; if ((n & 3) == 3) j = -j; } int s = CTZ64(a); a >>= s; if (((n & 7) == 3 || (n & 7) == 5) && (s & 1)) j = -j; if ((a & n & 3) == 3) j = -j; SWAP(a, n); a %= n; if (a > n / 2) a -= n; } return n == 1 ? j : 0; } #pragma endregion quadratic residue #pragma region RNGs u32 lcg_rand(void) { static u64 lcg_state = 14534622846793005ull; lcg_state = 6364136223846793005ull * lcg_state + 1442695040888963407ull; return (u32)lcg_state; } u32 lcg_range(u32 l, u32 r) { return l + lcg_rand() % (r - l + 1); } u32 *lcg_rands(u32 k, size_t len) { u32 *ret = (u32 *)malloc(len * sizeof(u32)); for (size_t i = 0; i < len; ++i) ret[i] = lcg_rand() % k; return ret; } f32 lcg_randf(void) { u32 a = 0x3F800000u | (lcg_rand() >> 9); return (*((f32 *)(&a))) - 1; } u32 pcg_rand(void) { static u64 pcg_state = 0x853c49e6748fea9bull; u64 t = pcg_state; pcg_state = t * 0x5851f42d4c957f2dull + 0xda3e39cb94b95bdbull; u32 sh = ((t >> 18u) ^ t) >> 27u; u32 ro = t >> 59u; return (sh >> ro) | (sh << ((-ro) & 31)); } u32 pcg_range(u32 l, u32 r) { return l + pcg_rand() % (r - l + 1); } u32 *pcg_rands(u32 k, size_t len) { u32 *ret = (u32 *)malloc(len * sizeof(u32)); for (size_t i = 0; i < len; ++i) ret[i] = pcg_rand() % k; return ret; } f32 pcg_randf(void) { u32 a = 0x3F800000u | (pcg_rand() >> 9); return (*((f32 *)(&a))) - 1; } u64 msws_rand(void) { static u64 msws_state1 = 0; static u64 msws_state2 = 0; static u64 msws_state3 = 0xb5ad4eceda1ce2a9ul; static u64 msws_state4 = 0; static u64 msws_state5 = 0; static u64 msws_state6 = 0x278c5a4d8419fe6bul; u64 ret; msws_state1 *= msws_state1; ret = msws_state1 += (msws_state2 += msws_state3); msws_state1 = (msws_state1 >> 32) | (msws_state1 << 32); msws_state4 *= msws_state4; msws_state4 += (msws_state5 += msws_state6); msws_state4 = (msws_state4 >> 32) | (msws_state4 << 32); return ret ^ msws_state4; } u64 msws_range(u64 l, u64 r) { return l + msws_rand() % (r - l + 1); } u64 *msws_rands(u64 k, size_t len) { u64 *ret = (u64 *)malloc(len * sizeof(u64)); for (size_t i = 0; i < len; ++i) ret[i] = msws_rand() % k; return ret; } f64 msws_randf(void) { u64 a = 0x3FF0000000000000ull | (msws_rand() >> 12); return (*((f64 *)(&a))) - 1; } u64 xrsr128p_rand(void) { static u64 xrsr128p_state1 = 0x1ull; static u64 xrsr128p_state2 = 0x2ull; const u64 s0 = xrsr128p_state1; u64 s1 = xrsr128p_state2; const u64 ret = s0 + s1; s1 ^= s0; xrsr128p_state1 = ROTL64(s0, 24) ^ s1 ^ (s1 << 16); xrsr128p_state2 = ROTL64(s1, 37); return ret; } u64 xrsr128p_range(u64 l, u64 r) { return l + xrsr128p_rand() % (r - l + 1); } u64 *xrsr128p_rands(u64 k, size_t len) { u64 *ret = (u64 *)malloc(len * sizeof(u64)); for (size_t i = 0; i < len; ++i) ret[i] = xrsr128p_rand() % k; return ret; } f64 xrsr128p_randf(void) { u64 a = 0x3FF0000000000000ull | (xrsr128p_rand() >> 12); return (*((f64 *)(&a))) - 1; } #pragma endregion RNGs #pragma region sort void comb_sort11(size_t a_len, u64 *a) { size_t g = a_len; while (true) { bool no_swap = true; g = (g * 10) / 13 > 1 ? (g * 10) / 13 : 1; if (g == 9 || g == 10) g = 11; for (size_t i = 0; i + g < a_len; ++i) { if (a[i] > a[i + g]) { SWAP(a[i + g], a[i]); no_swap = false; } } if (g == 1 && no_swap) break; } } #pragma endregion sort // clang-format off #pragma region Montgomery ModInt static u32 N_32, N2_32, NI_32, R1_32, R2_32, R3_32; void Montgomery32(u32 mod) { assert(mod < 1073741824u); N_32 = mod; N2_32 = mod << 1; NI_32 = mod; NI_32 *= 2 - NI_32 * mod; NI_32 *= 2 - NI_32 * mod; NI_32 *= 2 - NI_32 * mod; NI_32 *= 2 - NI_32 * mod; R1_32 = (u32)(i32)-1 % mod + 1; R2_32 = (u64)(i64)-1 % mod + 1; R3_32 = (u32)(((u64)R1_32 * (u64)R2_32) % mod); } u32 mr32(u64 A) { u32 y = (u32)(A >> 32) - (u32)(((u64)((u32)A * NI_32) * N_32) >> 32); return (i32)y < 0 ? y + N_32 : y;} u32 To32(u32 a) { return mr32((u64)a * R2_32); } u32 From32(u32 A) { return mr32((u64)A); } u32 Add32(u32 A, u32 B) { A += B - N2_32; A += N2_32 & -(A >> 31); return A; } u32 Sub32(u32 A, u32 B) { A -= B; A += N2_32 & -(A >> 31); return A; } u32 SAdd32(u32 A, u32 B) { A += B; A -= (A >= N_32 ? N_32 : 0); return A; } u32 SSub32(u32 A, u32 B) { A += (A < B ? N_32 : 0); A -= B; return A; } u32 Min32(u32 A) { return SSub32(0, A); } u32 Mul32(u32 A, u32 B) { return mr32((u64)A * B); } u32 Square32(u32 A) { return mr32((u64)A * A); } u32 Twice32(u32 A) { return (A <<= 1) >= N_32 ? A - N_32 : A; } u32 Power32(u32 A, size_t k) { return k ? Mul32(Power32(Square32(A), k >> 1), k & 1 ? A : R1_32) : R1_32; } u32 Inverse32(u32 A) { return mr32((u64)R3_32 * mod_inverse32(A, N_32)); } u32 Div32(u32 A, u32 B) { return Mul32(A, Inverse32(B)); } u32 Half32(u32 A) { return (A & 1) ? ((A >> 1) + (N_32 >> 1) + 1) : (A >> 1); } int Equal32(u32 A, u32 B) { return (((A >= N_32) ? (A - N_32) : A) == ((B >= N_32) ? (B - N_32) : B)) ? 1 : 0; } int NotEqual32(u32 A, u32 B) { return (((A >= N_32) ? (A - N_32) : A) != ((B >= N_32) ? (B - N_32) : B)) ? 1 : 0; } u32 In32() { u32 c = 0; u32 a = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { a = a * 10 + c - 48; c = getchar_unlocked(); } return To32(a); } void Out32(u32 A) { u32 a = From32(A); out_u32(a); } static u64 N_64, N2_64, NI_64, R1_64, R2_64, R3_64; void Montgomery64(u64 mod) { assert(mod < 4611686018427387904ull); N_64 = mod; N2_64 = mod << 1; NI_64 = mod; NI_64 *= 2 - NI_64 * mod; NI_64 *= 2 - NI_64 * mod; NI_64 *= 2 - NI_64 * mod; NI_64 *= 2 - NI_64 * mod; NI_64 *= 2 - NI_64 * mod; R1_64 = (u64)(i64)-1 % mod + 1; R2_64 = (u128)(i128)-1 % mod + 1; R3_64 = (u64)(((u128)R1_64 * (u128)R2_64) % mod); } u64 mr64(u128 A) { u64 y = (u64)(A >> 64) - (u64)(((u128)((u64)A * NI_64) * N_64) >> 64); return (i64)y < 0 ? y + N_64 : y; } u64 To64(u64 a) { return mr64((u128)a * R2_64); } u64 From64(u64 A) { return mr64((u128)A); } u64 Add64(u64 A, u64 B) { A += B - N2_64; A += N2_64 & -(A >> 63); return A; } u64 Sub64(u64 A, u64 B) { A -= B; A += N2_64 & -(A >> 63); return A; } u64 SAdd64(u64 A, u64 B) { A += B; A -= (A >= N_64 ? N_64 : 0); return A; } u64 SSub64(u64 A, u64 B) { A += (A < B ? N_64 : 0); A -= B; return A; } u64 Min64(u64 A) { return SSub64(0, A); } u64 Mul64(u64 A, u64 B) { return mr64((u128)A * B); } u64 Square64(u64 A) { return mr64((u128)A * A); } u64 Twice64(u64 A) { return (A <<= 1) >= N_64 ? A - N_64 : A; } u64 Power64(u64 A, size_t k) { return k ? Mul64(Power64(Square64(A), k >> 1), k & 1 ? A : R1_64) : R1_64; } u64 Inverse64(u64 A) { return mr64((u128)R3_64 * mod_inverse64(A, N_64)); } u64 Div64(u64 A, u64 B) { return Mul64(A, Inverse64(B)); } u64 Half64(u64 A) { return (A & 1) ? ((A >> 1) + (N_64 >> 1) + 1) : (A >> 1); } int Equal64(u64 A, u64 B) { return (((A >= N_64) ? (A - N_64) : A) == ((B >= N_64) ? (B - N_64) : B)) ? 1 : 0; } int NotEqual64(u64 A, u64 B) { return (((A >= N_64) ? (A - N_64) : A) != ((B >= N_64) ? (B - N_64) : B)) ? 1 : 0; } u64 In64() { u64 c = 0; u64 a = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { a = a * 10 + c - 48; c = getchar_unlocked(); } return To64(a); } void Out64(u64 A) { u64 a = From64(A); out_u64(a); } #pragma endregion Montgomery ModInt #pragma region Barrett ModInt u64 m_b64; u64 im_b64; u64 divrem64[2] = {0}; void new_br64(u64 m) { m_b64 = m; im_b64 = (~((u64)0ul)) / m; } void div_rem_br64(u64 lhs) { if (m_b64 == 1) { divrem64[0] = lhs; divrem64[1] = 0; return; } u64 q = (u64)(((u128)lhs * (u128)im_b64) >> 64); u64 r = lhs - q * m_b64; if (m_b64 <= r) { r -= m_b64; q += 1ul; } divrem64[0] = q; divrem64[1] = r; } u32 add_br32(u32 a, u32 b) { a += b; a -= (a >= (u32)m_b64 ? (u32)m_b64 : 0); return a; } u32 sub_br32(u32 a, u32 b) { a += (a < b ? (u32)m_b64 : 0); a -= b; return a; } u32 mul_br32(u32 a, u32 b) { div_rem_br64((u64)a * b); return (u32)divrem64[1]; } u32 sqr_br32(u32 a) { div_rem_br64((u64)a * a); return (u32)divrem64[1]; } u32 pow_br32(u32 a, u32 k) { return k ? mul_br32(pow_br32(sqr_br32(a), k >> 1), k & 1 ? a : 1) : 1; } u128 m_b128; u128 im_b128; u128 divrem128[2] = {0}; void new_br128(u128 m) { m_b128 = m; im_b128 = (~((u128)0ull)) / m; } void div_rem_br128(u128 lhs) { if (m_b128 == 1) { divrem128[0] = lhs; divrem128[1] = 0; return; } u128 t = (lhs >> 64) * (im_b128 >> 64); u128 x = ((lhs & 0xffffffffffffffffull) * (im_b128 & 0xffffffffffffffffull)) >> 64; u8 flag; u128 auil = (lhs >> 64) * (im_b128 & 0xffffffffffffffffull); if (auil <= (u128)((i128)(-1L)) - x) flag = 0; else flag = 1; x += auil; t += flag; u128 aliu = (lhs & 0xffffffffffffffffull) * (im_b128 >> 64); if (aliu <= (u128)((i128)(-1L)) - x) flag = 0; else flag = 1; x += aliu; t += flag; u128 q = t + (x >> 64); u128 r = lhs - q * m_b128; if (m_b128 <= r) { r -= m_b128; q += 1; } divrem128[0] = q; divrem128[1] = r; } u64 add_br64(u64 a, u64 b) { a += b; a -= (a >= (u64)m_b128 ? (u64)m_b128 : 0); return a; } u64 sub_br64(u64 a, u64 b) { a += (a < b ? (u64)m_b128 : 0); a -= b; return a; } u64 mul_br64(u64 a, u64 b) { div_rem_br128((u128)a * b); return (u64)divrem128[1]; } u64 sqr_br64(u64 a) { div_rem_br128((u128)a * a); return (u64)divrem128[1]; } u64 pow_br64(u64 a, u64 k) { return k ? mul_br64(pow_br64(sqr_br64(a), k >> 1), k & 1 ? a : 1) : 1; } #pragma endregion Barrett ModInt // clang-format on bool miller_rabin(u64 n, size_t base_len, u64 *bases) { u64 s = CTZ64(n - 1); u64 d = (n - 1) >> s; Montgomery64(n); for (int i = 0; i < base_len; ++i) { if (n <= bases[i]) return true; u64 a = Power64(To64(bases[i]), d); if (a == R1_64) continue; u64 r = 1; while (a != n - R1_64) { if (r == s) return false; a = Square64(a); r++; } } return true; } bool is_prime(u64 n) { if (n < 64ul) return (1ull << n) & 2891462833508853932ull; if (!(n & 1)) return false; if (n < 4759123141ul) { u64 bases[3] = {2ul, 7ul, 61ul}; return miller_rabin(n, 3, bases); } else { u64 bases[7] = {2ul, 325ul, 9375ul, 28178ul, 450775ul, 9780504ul, 1795265022ul}; return miller_rabin(n, 7, bases); } } int main(int argc, char *argv[]) { int Q = in_i32(); while (Q--) { u64 x = in_u64(); out_u64(x); SP(); putchar_unlocked(is_prime(x) ? '1' : '0'); NL(); } return 0; }