結果

問題 No.5007 Steiner Space Travel
ユーザー titan23titan23
提出日時 2022-10-06 13:52:47
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 1,982 bytes
コンパイル時間 240 ms
実行使用メモリ 84,152 KB
スコア 0
最終ジャッジ日時 2022-10-06 13:53:05
合計ジャッジ時間 16,184 ms
ジャッジサーバーID
(参考情報)
judge16 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import numpy as np
import itertools
import random

N, M = map(int, input().split())
AB = [np.array(list(map(int, input().split()))) for _ in range(N)]
AB = np.array(AB)

class KMeans:

  def __init__(self, n_clusters, max_iter = 10, random_seed = 0):
    self.n_clusters = n_clusters
    self.max_iter = max_iter

  def fit(self, X):
    self.labels_ = []
    now = 0
    while len(self.labels_) < len(X):
      self.labels_.append(now)
      now += 1
      now %= self.n_clusters
    random.shuffle(self.labels_)
    labels_prev = [0]*len(X)
    count = 0
    self.cluster_centers_ = [(0, 0)] * self.n_clusters

    while (not (self.labels_ == labels_prev) and count < self.max_iter):
      syuukei = [[] for _ in range(self.n_clusters)]
      for i in range(len(X)):
        syuukei[self.labels_[i]].append(X[i])
      for i,l in enumerate(syuukei):
        if l:
          x, y = sum(x for x,y in l)//len(l), sum(y for x,y in l)//len(l)
        else:
          x, y = random.randint(0, 1000), random.randint(0, 1000)
        self.cluster_centers_[i] = (x, y)

      labels_prev = self.labels_[:]
      for i in range(len(X)):
        min = -1
        dist = 10**18
        for j in range(self.n_clusters):
          tmp = (X[i][0] - self.cluster_centers_[j][0])**2 + (X[i][1] - self.cluster_centers_[j][1])**2
          if tmp < dist:
            dist = tmp
            self.labels_[i] = j

      count += 1

  def predict(self, X):
    dist = ((X[:, :, np.newaxis] - self.cluster_centers_.T[np.newaxis, :, :]) ** 2).sum(axis = 1)
    labels = dist.argmin(axis = 1)
    return labels


model = KMeans(8)
model.fit(AB)
labels = model.labels_
centers = model.cluster_centers_


ans = [(1, 0)]
L = sorted(enumerate(labels), key=lambda x: x[1])
for i in range(L[-1][1]+1):
  for j, cluster_number in L:
    if cluster_number == i:
      ans.append((1, j))
      ans.append((2, i))
ans.append((1, 0))

for c,d in centers:
  print(c, d)
print(len(ans))
for a,b in ans:
  print(a, b+1)
0