結果
問題 | No.1463 Hungry Kanten |
ユーザー |
|
提出日時 | 2022-10-08 13:20:00 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 636 ms / 2,000 ms |
コード長 | 4,094 bytes |
コンパイル時間 | 2,188 ms |
コンパイル使用メモリ | 210,948 KB |
最終ジャッジ日時 | 2025-02-08 00:21:53 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>#define rep(i,n) for(int i = 0; i < (n); i++)using namespace std;typedef long long ll;struct Eratosthenes {vector<bool> isprime;vector<int> primes;vector<int> spf; // smallest prime factorsvector<int> mobius;Eratosthenes(int N) : isprime(N + 1, true),spf(N + 1, -1),mobius(N + 1, 1) {isprime[1] = false;spf[1] = 1;for(int p = 2; p <= N; p++){if(!isprime[p]) continue;primes.push_back(p);spf[p] = p;mobius[p] = -1;for(int q = p * 2; q <= N; q += p){isprime[q] = false;if(spf[q] == -1) spf[q] = p;mobius[q] = ((q / p) % p == 0 ? 0 : -mobius[q]);}}}vector<pair<int,int>> factorize(int n) {vector<pair<int,int>> res;while(n > 1) {int p = spf[n], e = 0;while(spf[n] == p) n /= p, e++;res.push_back({p, e}); // p^e}return res;}vector<int> divisors(int n) {vector<int> res({1});auto pf = factorize(n);for(auto p : pf) {int s = (int)res.size();for(int i = 0; i < s; i++) {int v = 1;for(int j = 0; j < p.second; j++) {v *= p.first;res.push_back(res[i] * v);}}}return res;}template<class T> void fast_zeta(vector< T > &f) {int N = f.size();vector<bool> isprime = Eratosthenes(N);for(int p = 2; p < N; p++) {if(!isprime[p]) continue;for(int k = (N - 1) / p; k >= 1; k--) {f[k] += f[k * p];}}}template<class T> void fast_mobius(vector< T > &F) {int N = F.size();vector<bool> isprime = Eratosthenes(N);for(int p = 2; p < N; p++) {if(!isprime[p]) continue;for(int k = 1; k * p < N; k++) {F[k] -= F[k * p];}}}template<class T> vector< T > gcd_convolution(const vector< T > &f, const vector< T > &g) {int N = max(f.size(), g.size());vector< T > F(N, 0), G(N, 0), H(N);for(int i = 0; i < f.size(); i++) F[i] = f[i];for(int i = 0; i < g.size(); i++) G[i] = g[i];fast_zeta(F);fast_zeta(G);for(int i = 1; i < N; i++) H[i] = F[i] * G[i];fast_mobius(H);return H;}long long fast_euler_phi(int n) {auto pf = factorize(n);long long res = n;for(auto p : pf) {res *= p.first - 1;res /= p.first;}return res;}};using uint = unsigned int;using HASH = array<uint,4>;unsigned int randint() {static unsigned int tx = 123456789, ty = 362436069, tz = 521288629, tw = 88675123;unsigned int tt = (tx^(tx<<11));tx = ty; ty = tz; tz = tw;return ( tw=(tw^(tw>>19))^(tt^(tt>>8)) );}constexpr uint C = 1e9;HASH MOD = {C-63, C+7, C+9, C+21};int main(){cin.tie(0);ios::sync_with_stdio(0);int N,K; cin >> N >> K;vector<int> A(N);rep(i,N) cin >> A[i];int MAX_A = 20 * 1000;Eratosthenes sieve(MAX_A);vector<HASH> HA(MAX_A + 1);rep(i,MAX_A+1) {uint X = randint();rep(j,4) {HA[i][j] = X % MOD[j];}}set<HASH> st;rep(S,1<<N) if(__builtin_popcount(S) >= K) {int sum = 0;HASH PROD = {0, 0, 0, 0};rep(i,N) if(S & (1 << i)) {sum += A[i];auto pf = sieve.factorize(A[i]);for(auto [p, e] : pf) rep(_,e) rep(j,4) PROD[j] = (PROD[j] + HA[p][j]) % MOD[j];}HASH SUM = {0, 0, 0, 0};auto pf = sieve.factorize(sum);for(auto [p, e] : pf) rep(_,e) rep(j,4) SUM[j] = (SUM[j] + HA[p][j]) % MOD[j];st.insert(SUM);st.insert(PROD);}cout << st.size() << endl;}