結果

問題 No.1463 Hungry Kanten
ユーザー rogi52rogi52
提出日時 2022-10-08 13:20:00
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 636 ms / 2,000 ms
コード長 4,094 bytes
コンパイル時間 2,188 ms
コンパイル使用メモリ 210,948 KB
最終ジャッジ日時 2025-02-08 00:21:53
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define rep(i,n) for(int i = 0; i < (n); i++)
using namespace std;
typedef long long ll;
struct Eratosthenes {
vector<bool> isprime;
vector<int> primes;
vector<int> spf; // smallest prime factors
vector<int> mobius;
Eratosthenes(int N) : isprime(N + 1, true),
spf(N + 1, -1),
mobius(N + 1, 1) {
isprime[1] = false;
spf[1] = 1;
for(int p = 2; p <= N; p++){
if(!isprime[p]) continue;
primes.push_back(p);
spf[p] = p;
mobius[p] = -1;
for(int q = p * 2; q <= N; q += p){
isprime[q] = false;
if(spf[q] == -1) spf[q] = p;
mobius[q] = ((q / p) % p == 0 ? 0 : -mobius[q]);
}
}
}
vector<pair<int,int>> factorize(int n) {
vector<pair<int,int>> res;
while(n > 1) {
int p = spf[n], e = 0;
while(spf[n] == p) n /= p, e++;
res.push_back({p, e}); // p^e
}
return res;
}
vector<int> divisors(int n) {
vector<int> res({1});
auto pf = factorize(n);
for(auto p : pf) {
int s = (int)res.size();
for(int i = 0; i < s; i++) {
int v = 1;
for(int j = 0; j < p.second; j++) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
return res;
}
template<class T> void fast_zeta(vector< T > &f) {
int N = f.size();
vector<bool> isprime = Eratosthenes(N);
for(int p = 2; p < N; p++) {
if(!isprime[p]) continue;
for(int k = (N - 1) / p; k >= 1; k--) {
f[k] += f[k * p];
}
}
}
template<class T> void fast_mobius(vector< T > &F) {
int N = F.size();
vector<bool> isprime = Eratosthenes(N);
for(int p = 2; p < N; p++) {
if(!isprime[p]) continue;
for(int k = 1; k * p < N; k++) {
F[k] -= F[k * p];
}
}
}
template<class T> vector< T > gcd_convolution(const vector< T > &f, const vector< T > &g) {
int N = max(f.size(), g.size());
vector< T > F(N, 0), G(N, 0), H(N);
for(int i = 0; i < f.size(); i++) F[i] = f[i];
for(int i = 0; i < g.size(); i++) G[i] = g[i];
fast_zeta(F);
fast_zeta(G);
for(int i = 1; i < N; i++) H[i] = F[i] * G[i];
fast_mobius(H);
return H;
}
long long fast_euler_phi(int n) {
auto pf = factorize(n);
long long res = n;
for(auto p : pf) {
res *= p.first - 1;
res /= p.first;
}
return res;
}
};
using uint = unsigned int;
using HASH = array<uint,4>;
unsigned int randint() {
static unsigned int tx = 123456789, ty = 362436069, tz = 521288629, tw = 88675123;
unsigned int tt = (tx^(tx<<11));
tx = ty; ty = tz; tz = tw;
return ( tw=(tw^(tw>>19))^(tt^(tt>>8)) );
}
constexpr uint C = 1e9;
HASH MOD = {C-63, C+7, C+9, C+21};
int main(){
cin.tie(0);
ios::sync_with_stdio(0);
int N,K; cin >> N >> K;
vector<int> A(N);
rep(i,N) cin >> A[i];
int MAX_A = 20 * 1000;
Eratosthenes sieve(MAX_A);
vector<HASH> HA(MAX_A + 1);
rep(i,MAX_A+1) {
uint X = randint();
rep(j,4) {
HA[i][j] = X % MOD[j];
}
}
set<HASH> st;
rep(S,1<<N) if(__builtin_popcount(S) >= K) {
int sum = 0;
HASH PROD = {0, 0, 0, 0};
rep(i,N) if(S & (1 << i)) {
sum += A[i];
auto pf = sieve.factorize(A[i]);
for(auto [p, e] : pf) rep(_,e) rep(j,4) PROD[j] = (PROD[j] + HA[p][j]) % MOD[j];
}
HASH SUM = {0, 0, 0, 0};
auto pf = sieve.factorize(sum);
for(auto [p, e] : pf) rep(_,e) rep(j,4) SUM[j] = (SUM[j] + HA[p][j]) % MOD[j];
st.insert(SUM);
st.insert(PROD);
}
cout << st.size() << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0