結果

問題 No.386 貪欲な領主
ユーザー heno239heno239
提出日時 2022-10-09 20:19:48
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 319 ms / 2,000 ms
コード長 7,772 bytes
コンパイル時間 2,257 ms
コンパイル使用メモリ 162,544 KB
最終ジャッジ日時 2025-02-08 00:49:39
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
//constexpr ll mod = 998244353;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
template<typename T>
void chmin(T& a, T b) {
a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
a = max(a, b);
}
template<typename T>
void cinarray(vector<T>& v) {
rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
rep(i, v.size()) {
if (i > 0)cout << " "; cout << v[i];
}
cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
//if (x == 0)return 0;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
//mod should be <2^31
struct modint {
int n;
modint() :n(0) { ; }
modint(ll m) {
if (m < 0 || mod <= m) {
m %= mod; if (m < 0)m += mod;
}
n = m;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
ll gcd(ll a, ll b) {
a = abs(a); b = abs(b);
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
using ld = long double;
//typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);
template<typename T>
void addv(vector<T>& v, int loc, T val) {
if (loc >= v.size())v.resize(loc + 1, 0);
v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
fill(isp + 2, isp + mn, true);
for (int i = 2; i < mn; i++) {
if (!isp[i])continue;
ps.push_back(i);
for (int j = 2 * i; j < mn; j += i) {
isp[j] = false;
}
}
}*/
//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
if (res == st.begin())return st.end();
res--; return res;
}
//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
a = a + b; return a;
}
mP operator-(mP a, mP b) {
return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
a = a - b; return a;
}
LP operator+(LP a, LP b) {
return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
a = a + b; return a;
}
LP operator-(LP a, LP b) {
return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
a = a - b; return a;
}
mt19937 mt(time(0));
const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };
//-----------------------------------------
struct lcagraph {
private:
int n;
vector<vector<int>> G;
vector<vector<int>> parent;
vector<int> depth;
int root;
int tmp;
public:
lcagraph(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
lcagraph() {}
void init(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
void add_edge(int a, int b) {
G[a].push_back(b);
G[b].push_back(a);
}
void dfs(int id, int fr, int d) {
parent[id][0] = fr;
depth[id] = d;
rep(j, G[id].size()) {
int to = G[id][j];
if (to == fr)continue;
dfs(to, id, d + 1);
}
}
void complete(int r = 0) {
root = r;
dfs(root, -1, 0);
rep(j, tmp - 1)rep(i, n) {
if (parent[i][j] < 0)parent[i][j + 1] = -1;
else parent[i][j + 1] = parent[parent[i][j]][j];
}
}
int lca(int u, int v) {
if (depth[u] > depth[v])swap(u, v);
for (int k = 0; k < tmp; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[v][k];
}
}
if (u == v)return u;
for (int k = tmp - 1; k >= 0; k--) {
if (parent[u][k] != parent[v][k]) {
u = parent[u][k];
v = parent[v][k];
}
}
return parent[u][0];
}
int dep(int x) {
return depth[x];
}
int dist(int x, int y) {
int l = lca(x, y);
return depth[x] + depth[y] - 2 * depth[l];
}
//from a to b
int proc_d(int a, int b, int d) {
int l = lca(a, b);
int res;
if (dep(a) - dep(l) >= d) {
res = a;
rep(i, tmp) {
if (d & (1 << i))res = parent[res][i];
}
}
else {
d = dep(a) + dep(b) - 2 * dep(l) - d;
res = b;
rep(i, tmp) {
if (d & (1 << i))res = parent[res][i];
}
}
return res;
}
};
void solve() {
int n; cin >> n;
lcagraph lc(n);
vector<vector<int>> G(n);
rep(i, n - 1) {
int a, b; cin >> a >> b;
lc.add_edge(a, b);
G[a].push_back(b);
G[b].push_back(a);
}
lc.complete();
vector<int> c(n);
rep(i, n)cin >> c[i];
vector<int> d(n);
vector<int> par(n);
function<void(int, int)> dfs = [&](int id, int fr) {
par[id] = fr;
d[id] += c[id];
for (int to : G[id])if (to != fr) {
d[to] += d[id]; dfs(to, id);
}
}; dfs(0,-1);
auto query = [&](int a, int b,int c) {
ll res = 0;
res += d[a];
res += d[b];
int l = lc.lca(a, b);
res -= d[l];
if (par[l] >= 0)res -= d[par[l]];
res *= c;
return res;
};
ll ans = 0;
int q; cin >> q;
rep(i, q) {
int a, b, c; cin >> a >> b >> c;
ans += query(a, b, c);
}
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//init();
//expr();
//while(true)
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0