結果
問題 | No.1549 [Cherry 2nd Tune] BANning Tuple |
ユーザー | akakimidori |
提出日時 | 2022-10-10 23:19:10 |
言語 | Rust (1.77.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,041 bytes |
コンパイル時間 | 13,811 ms |
コンパイル使用メモリ | 380,456 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-24 21:02:55 |
合計ジャッジ時間 | 14,963 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 5 ms
5,376 KB |
testcase_04 | AC | 5 ms
5,376 KB |
testcase_05 | AC | 5 ms
5,376 KB |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | AC | 4 ms
5,376 KB |
testcase_08 | AC | 4 ms
5,376 KB |
testcase_09 | AC | 5 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | WA | - |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 4 ms
5,376 KB |
testcase_14 | AC | 5 ms
5,376 KB |
testcase_15 | WA | - |
testcase_16 | AC | 5 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 5 ms
5,376 KB |
ソースコード
// 条件なしは (1/(1-x))^N // // A_i <= X <= B_i を満たさない、というのは多項式でどう書けるか // 1/(1-x) - x^a(1-x^(b-a+1))/(1-x) // (1 - x^a + x^(b+1))/(1-x) // 分子についてdp, クエリは戻して計算 // W=3000としてO(QW) // // 区間が複数個のパターンが処理できてない // え、めんどい use std::collections::*; type Map<K, V> = BTreeMap<K, V>; fn main() { input! { n: usize, q: usize, ask: [(usize, usize, usize, usize, usize); q], } let m = 3000; let pc = Precalc::new(m); let mut geta = 0; let mut ban = Map::<usize, Vec<(usize, usize)>>::new(); let mut dp = vec![M::zero(); m + 1]; dp[0] = M::one(); for (k, a, b, s, t) in ask { if let Some(p) = ban.get(&k) { let mut p = &p[..]; let g = if p[0].0 == 0 { let g = p[0].1; geta -= g; p = &p[1..]; g } else { 0 }; for i in 0..dp.len() { let mut v = dp[i]; for (l, r) in p.iter().map(|p| (p.0 - g, p.1 - g)) { if i >= l { v += dp[i - l]; } if i >= r { v -= dp[i - r]; } } dp[i] = v; } } let po = ban.entry(k).or_insert(vec![]); po.push((a, b + 1)); po.sort(); po.dedup_by(|a, b| { a.0 <= b.1 && { b.1 = a.1.max(b.1); true } }); let mut p = &po[..]; let g = if p[0].0 == 0 { let g = p[0].1; geta -= g; p = &p[1..]; g } else { 0 }; for i in (0..dp.len()).rev() { let mut v = dp[i]; for (l, r) in p.iter().map(|p| (p.0 - g, p.1 - g)) { if i >= l { v -= dp[i - l]; } if i >= r { v += dp[i - r]; } } dp[i] = v; } let calc = |t: usize| -> M { let mut res = M::zero(); let mut nu = M::one(); for (i, j) in (0..dp.len()).filter(|p| *p + geta <= t).rev().enumerate() { res += dp[j] * nu * pc.ifact(i); nu *= M::from(n + 1 + i); } res }; let mut ans = calc(t); if s > 0 { ans -= calc(s - 1); } println!("{}", ans); } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo<const M: u32>; impl<const M: u32> Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl<T> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> Default for ModInt<T> { fn default() -> Self { Self::zero() } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl<T> ModInt<T> { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl<T: Modulo> ModInt<T> { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<T> { fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, inv: Vec<ModInt<T>>, } impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt<ConstantModulo<998_244_353>>;