結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | Navier_Boltzmann |
提出日時 | 2022-10-11 04:58:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 142 ms / 5,000 ms |
コード長 | 1,854 bytes |
コンパイル時間 | 147 ms |
コンパイル使用メモリ | 82,508 KB |
実行使用メモリ | 77,504 KB |
最終ジャッジ日時 | 2024-06-25 01:29:47 |
合計ジャッジ時間 | 5,141 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
from collections import * from itertools import * from functools import * from heapq import * import sys,math input = sys.stdin.readline N,K = map(int,input().split()) A = list(map(int,input().split())) mod = 10**9 + 7 def answer1(): dp = [0]*(K) for i in range(N): dp[i] = A[i] S = sum(dp)%mod for i in range(N,K): dp[i] = S S += dp[i] - dp[i-N] S %= mod print(dp[-1],sum(dp)%mod) def matrix_mul(A,B,mod = None): nA = len(A) mA = len(A[0]) mB = len(B[0]) tmp = [[0]*mB for _ in range(nA)] if mod is None: for i in range(nA): for j in range(mB): tmp[i][j] = sum(A[i][k]*B[k][j] for k in range(mA)) return tmp for i in range(nA): for j in range(mB): tmp[i][j] = sum(A[i][k]*B[k][j]%mod for k in range(mA))%mod return tmp def matrix_pow(A,n,mod = None): nbit = list(str(bin(n))[2:]) nbit = [int(i) for i in nbit] N = len(A) C = [[0]*N for _ in range(N)] B = A for i in range(N): C[i][i] = 1 if mod is None: for i in range(len(nbit)): if nbit[-1-i] == 1: C = matrix_mul(C,B) B = matrix_mul(B,B) return C for i in range(len(nbit)): if nbit[-1-i] == 1: C = matrix_mul(C,B,mod) B = matrix_mul(B,B,mod) return C def answer2(): I = [[A[i]] for i in range(N)] + [[A[0]]] X = [[0]*(N+1) for _ in range(N+1)] for i in range(N-1): X[i][i+1] = 1 for i in range(N): X[-2][i]=1 X[-1][1]=1 X[-1][-1]=1 Y = matrix_pow(X,K-1,mod=mod) Z = matrix_mul(Y,I,mod=mod) print(Z[0][0],Z[-1][0]) if N<50: answer2() else: answer1()