結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | Navier_Boltzmann |
提出日時 | 2022-10-11 04:58:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 142 ms / 5,000 ms |
コード長 | 1,854 bytes |
コンパイル時間 | 147 ms |
コンパイル使用メモリ | 82,508 KB |
実行使用メモリ | 77,504 KB |
最終ジャッジ日時 | 2024-06-25 01:29:47 |
合計ジャッジ時間 | 5,141 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
from collections import *from itertools import *from functools import *from heapq import *import sys,mathinput = sys.stdin.readlineN,K = map(int,input().split())A = list(map(int,input().split()))mod = 10**9 + 7def answer1():dp = [0]*(K)for i in range(N):dp[i] = A[i]S = sum(dp)%modfor i in range(N,K):dp[i] = SS += dp[i] - dp[i-N]S %= modprint(dp[-1],sum(dp)%mod)def matrix_mul(A,B,mod = None):nA = len(A)mA = len(A[0])mB = len(B[0])tmp = [[0]*mB for _ in range(nA)]if mod is None:for i in range(nA):for j in range(mB):tmp[i][j] = sum(A[i][k]*B[k][j] for k in range(mA))return tmpfor i in range(nA):for j in range(mB):tmp[i][j] = sum(A[i][k]*B[k][j]%mod for k in range(mA))%modreturn tmpdef matrix_pow(A,n,mod = None):nbit = list(str(bin(n))[2:])nbit = [int(i) for i in nbit]N = len(A)C = [[0]*N for _ in range(N)]B = Afor i in range(N):C[i][i] = 1if mod is None:for i in range(len(nbit)):if nbit[-1-i] == 1:C = matrix_mul(C,B)B = matrix_mul(B,B)return Cfor i in range(len(nbit)):if nbit[-1-i] == 1:C = matrix_mul(C,B,mod)B = matrix_mul(B,B,mod)return Cdef answer2():I = [[A[i]] for i in range(N)] + [[A[0]]]X = [[0]*(N+1) for _ in range(N+1)]for i in range(N-1):X[i][i+1] = 1for i in range(N):X[-2][i]=1X[-1][1]=1X[-1][-1]=1Y = matrix_pow(X,K-1,mod=mod)Z = matrix_mul(Y,I,mod=mod)print(Z[0][0],Z[-1][0])if N<50:answer2()else:answer1()