結果
| 問題 |
No.2180 Comprehensive Line Segments
|
| コンテスト | |
| ユーザー |
MasKoaTS
|
| 提出日時 | 2022-10-12 21:28:21 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,078 bytes |
| コンパイル時間 | 259 ms |
| コンパイル使用メモリ | 81,776 KB |
| 実行使用メモリ | 1,143,312 KB |
| 最終ジャッジ日時 | 2024-11-17 01:16:58 |
| 合計ジャッジ時間 | 80,696 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 MLE * 2 |
| other | AC * 9 TLE * 8 MLE * 8 |
ソースコード
import sys
from collections import deque
from fractions import Fraction as frac
input = sys.stdin.readline
INF = 10 ** 9
class Vector2:
def __init__(self, x: frac, y: frac):
self.x = x
self.y = y
def __eq__(self, other):
return (self.x == other.x and self.y == other.y)
def __hash__(self):
return hash((self.x, self.y))
def __sub__(self, other):
return Vector2(other.x - self.x, other.y - self.y)
class Line:
def __init__(self, a: frac, b:frac, c:frac):
self.a = a
self.b = b
self.c = c
def __eq__(self, other):
return (self.a == other.a and self.b == other.b and self.c == other.c)
def __hash__(self):
return hash((self.a, self.b, self.c))
def normalize_vector(v: Vector2) -> Vector2:
assert(v.x != 0 or v.y != 0)
norm = v.x ** 2 + v.y ** 2
return Vector2(v.x * abs(v.x) / norm, v.y * abs(v.y) / norm)
def calc_line(one: Vector2, other: Vector2) -> Line:
x1 = one.x; y1 = one.y
x2 = other.x; y2 = other.y
if(x1 == x2):
return Line(1, 0, x1)
a = (y1 - y2) / (x1 - x2)
c = y1 - a * x1
return Line(-a, 1, c)
def calc_intersection(one: Line, other: Line) -> Vector2:
p = one.a * other.b - other.a * one.b
if(p == 0):
return None
q = other.b * one.c - one.b * other.c
x = q / p
y = (other.c - other.a * x) / other.b if(one.b == 0) else (one.c - one.a * x) / one.b
return Vector2(x, y)
"""
Main Code
"""
# 入力
N = int(input())
P = [Vector2(*map(frac, input().split())) for _ in [0] * N]
# 点が1個のときは必ず答え1
if(N == 1):
print(1)
exit(0)
# 各点に番号付け
ph = {}
pt_id = 0
for p in P:
ph[p] = pt_id
pt_id += 1
# 有り得る直線を調べて番号付け
ln_id = 0
lh = {}
for i in range(N - 1):
for j in range(i + 1, N):
p1, p2 = P[i], P[j]
l = calc_line(p1, p2)
if(l in lh):
continue
lh[l] = ln_id
ln_id += 1
# 有り得る交点を調べて番号付け
lis = list(lh.keys())
for i in range(ln_id - 1):
for j in range(i + 1, ln_id):
l1, l2 = lis[i], lis[j]
p = calc_intersection(l1, l2)
if(p is None or p in ph):
continue
P.append(p)
ph[p] = pt_id
pt_id += 1
# 任意の2点について、2点から構成されるベクトルを調べて正規化
vec_lis = [[None]*pt_id for _ in [0]*pt_id]
for i in range(pt_id - 1):
for j in range(i + 1, pt_id):
if(calc_line(P[i],P[j]) not in lh):
continue
vec_lis[i][j] = normalize_vector(P[j] - P[i])
vec_lis[j][i] = normalize_vector(P[i] - P[j])
# グラフ探索
dp = [[[INF]*pt_id for _ in [0]*pt_id] for _ in [0]*(1 << N)]
que = deque([])
for i in range(N):
que.append((0, 1 << i, i, i))
dp[1 << i][i][i] = 0
goal = (1 << N) - 1
ans = INF
while(que):
c, b, lv, v = que.popleft()
if(c > dp[b][lv][v]):
continue
if(b == goal):
ans = c
break
for nv in range(pt_id):
if(v == nv or (vec_lis[v][nv] is None)):
continue
nb = b | (1 << nv) if(nv < N) else b
nc = c
if(lv == v or vec_lis[lv][v] != vec_lis[v][nv]):
nc += 1
if(nc >= dp[nb][v][nv]):
continue
dp[nb][v][nv] = nc
if(nc == c):
que.appendleft((nc, nb, v, nv))
else:
que.append((nc, nb, v, nv))
print(ans)
MasKoaTS