結果

問題 No.2180 Comprehensive Line Segments
ユーザー MasKoaTS
提出日時 2022-10-12 21:32:03
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,948 bytes
コンパイル時間 3,176 ms
コンパイル使用メモリ 242,860 KB
最終ジャッジ日時 2025-02-08 02:14:14
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2 MLE * 2
other AC * 10 WA * 1 TLE * 6 MLE * 8
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define rep(i, l, n) for (int i = (l); i < (n); i++)
#define inf 1000000000
using namespace std;
using ll = long long;
template <class T> using V = vector<T>;
inline ll gcd(ll x, ll y) {
x = abs(x); y = abs(y);
while (y != 0) {
ll r = x % y;
x = y;
y = r;
}
return x;
}
inline ll lcm(ll x, ll y) {
ll g = gcd(x, y);
return x / g * y;
}
struct Fraction {
ll num;
ll den;
Fraction(void) {
num = 0ll;
den = 1ll;
}
Fraction(ll num, ll den) {
assert(den != 0);
ll g = gcd(num, den);
num /= g;
den /= g;
if (den < 0) {
num = -num;
den = -den;
}
this->num = num;
this->den = den;
}
Fraction operator+(const Fraction other) const {
ll l = lcm(this->den, other.den);
ll a = l / this->den;
ll b = l / other.den;
ll nnum = this->num * a + other.num * b;
ll nden = l;
return Fraction(nnum, nden);
}
Fraction operator-(const Fraction other) const {
Fraction f = Fraction(-other.num, other.den);
return (*this) + f;
}
Fraction operator*(const Fraction other) const {
ll nnum = this->num * other.num;
ll nden = this->den * other.den;
return Fraction(nnum, nden);
}
Fraction operator/(const Fraction other) const {
Fraction f = Fraction(other.den, other.num);
return (*this) * f;
}
bool operator<(const Fraction other) const {
ll l = lcm(this->den, other.den);
ll a = l / this->den;
ll b = l / other.den;
return (this->num * a < other.num* b);
}
bool operator==(const Fraction other) const {
ll l = lcm(this->den, other.den);
ll a = l / this->den;
ll b = l / other.den;
return (this->num * a == other.num * b);
}
bool operator!=(const Fraction other) const {
return (((*this) == other) == false);
}
};
const Fraction zero = Fraction();
inline Fraction abs_frac(Fraction x) {
return ((x < zero) ? zero - x : x);
}
struct Vector2 {
Fraction x;
Fraction y;
Vector2(void) {
x = zero;
y = zero;
}
Vector2(Fraction x, Fraction y) {
this->x = x;
this->y = y;
}
Vector2 operator-(const Vector2 other) const {
return Vector2(other.x - this->x, other.y - this->y);
}
bool operator<(const Vector2 other) const {
return tie(this->x, this->y) < tie(other.x, other.y);
}
bool operator==(const Vector2 other) const {
return tie(this->x, this->y) == tie(other.x, other.y);
}
bool operator!=(const Vector2 other) const {
return tie(this->x, this->y) != tie(other.x, other.y);
}
};
const Vector2 zero_vector = Vector2();
struct Line {
Fraction a;
Fraction b;
Fraction c;
Line(void) {
a = zero;
b = zero;
c = zero;
}
Line(Fraction a, Fraction b, Fraction c) {
this->a = a;
this->b = b;
this->c = c;
}
bool operator<(const Line other) const {
return tie(this->a, this->b, this->c) < tie(other.a, other.b, other.c);
}
};
Line calcLine(Vector2 one, Vector2 other) {
Fraction x1 = one.x, y1 = one.y;
Fraction x2 = other.x, y2 = other.y;
if (x1 == x2) {
return Line(Fraction(1ll, 1ll), Fraction(0ll, 1ll), x1);
}
Fraction a = (y1 - y2) / (x1 - x2);
Fraction c = y1 - a * x1;
return Line(zero - a, Fraction(1ll, 1ll), c);
}
Vector2* calcIntersection(Line one, Line other) {
Fraction p = one.a * other.b - other.a * one.b;
if (p == zero) {
return nullptr;
}
Fraction q = other.b * one.c - one.b * other.c;
Fraction x = q / p;
Fraction y = (one.b == zero) ? ((other.c - other.a * x) / other.b) : ((one.c - one.a * x) / one.b);
return new Vector2(x, y);
}
Vector2 normalize_vector(Vector2 v) {
assert(v.x != zero or v.y != zero);
Fraction norm = v.x * v.x + v.y * v.y;
return Vector2(v.x * abs_frac(v.x) / norm, v.y * abs_frac(v.y) / norm);
}
/*
* Main Code
*/
int main(void) {
//
int N; cin >> N;
V<Vector2> P(N);
rep(i, 0, N) {
ll x, y; cin >> x >> y;
P[i] = { Fraction(x,1ll),Fraction(y,1ll) };
}
// 11
if (N == 1) {
cout << 1 << endl;
return 0;
}
//
map<Vector2, int> ph = {};
int pt_id = 0;
for (Vector2& p : P) {
ph[p] = pt_id;
pt_id++;
}
// 調
int ln_id = 0;
map<Line, int> lh = {};
V<Line> vec = {};
rep(i, 0, N - 1) {
rep(j, i + 1, N) {
Vector2 p1 = P[i], p2 = P[j];
Line l = calcLine(p1, p2);
if (lh.find(l) != lh.end()) {
continue;
}
lh[l] = ln_id;
ln_id++;
vec.push_back(l);
}
}
// 調
rep(i, 0, ln_id - 1) {
rep(j, i + 1, ln_id) {
Line l1 = vec[i], l2 = vec[j];
Vector2* p = calcIntersection(l1, l2);
if (p == nullptr or ph.find(*p) != ph.end()) {
continue;
}
P.push_back(*p);
ph[*p] = pt_id;
pt_id++;
}
}
//22調
V<V<Vector2> > vectors(pt_id, V<Vector2>(pt_id, zero_vector));
rep(i, 0, pt_id - 1) {
rep(j, i + 1, pt_id) {
if (lh.find(calcLine(P[i], P[j])) == lh.end()) {
continue;
}
vectors[i][j] = normalize_vector(P[j] - P[i]);
vectors[j][i] = normalize_vector(P[i] - P[j]);
}
}
//
V<V<V<int> > > dp(1 << N, V<V<int> >(pt_id, V<int>(pt_id, inf)));
deque<V<int> > que = {};
rep(i, 0, N) {
que.push_back({ 0, 1 << i, i, i });
dp[1 << i][i][i] = 0;
}
int goal = (1 << N) - 1;
int ans = inf;
int cnt = 0;
while (que.empty() == false) {
V<int> vec = que.front(); que.pop_front();
int c = vec[0], b = vec[1], lv = vec[2], v = vec[3];
if (c > dp[b][lv][v]) {
continue;
}
if (b == goal) {
ans = c;
break;
}
rep(nv, 0, pt_id) {
if (v == nv or vectors[v][nv] == zero_vector) {
continue;
}
int nb = (nv < N) ? (b | (1 << nv)) : b;
int nc = c;
if (lv == v or vectors[lv][v] != vectors[v][nv]) {
nc++;
}
if (nc >= dp[nb][v][nv]) {
continue;
}
dp[nb][v][nv] = nc;
if (nc == c) {
que.push_front({ nc, nb, v, nv });
}
else {
que.push_back({ nc, nb, v, nv });
}
}
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0