結果
問題 | No.2180 Comprehensive Line Segments |
ユーザー |
![]() |
提出日時 | 2022-10-12 21:54:05 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,097 bytes |
コンパイル時間 | 365 ms |
コンパイル使用メモリ | 82,164 KB |
実行使用メモリ | 1,088,248 KB |
最終ジャッジ日時 | 2024-11-17 01:19:01 |
合計ジャッジ時間 | 68,678 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 MLE * 2 |
other | AC * 11 WA * 1 TLE * 5 MLE * 8 |
ソースコード
import sysfrom collections import dequefrom fractions import Fraction as fracinput = sys.stdin.readlineINF = 10 ** 9class Vector2:def __init__(self, x: frac, y: frac):self.x = xself.y = ydef __eq__(self, other):return (self.x == other.x and self.y == other.y)def __hash__(self):return hash((self.x, self.y))def __sub__(self, other):return Vector2(other.x - self.x, other.y - self.y)class Line:def __init__(self, a: frac, b:frac, c:frac):self.a = aself.b = bself.c = cdef __eq__(self, other):return (self.a == other.a and self.b == other.b and self.c == other.c)def __hash__(self):return hash((self.a, self.b, self.c))def normalize_vector(v: Vector2) -> Vector2:assert(v.x != 0 or v.y != 0)norm = v.x ** 2 + v.y ** 2return Vector2(v.x * abs(v.x) / norm, v.y * abs(v.y) / norm)def calc_line(one: Vector2, other: Vector2) -> Line:x1 = one.x; y1 = one.yx2 = other.x; y2 = other.yif(x1 == x2):return Line(1, 0, x1)a = (y1 - y2) / (x1 - x2)c = y1 - a * x1return Line(-a, 1, c)def calc_intersection(one: Line, other: Line) -> Vector2:p = one.a * other.b - other.a * one.bif(p == 0):return Noneq = other.b * one.c - one.b * other.cx = q / py = (other.c - other.a * x) / other.b if(one.b == 0) else (one.c - one.a * x) / one.breturn Vector2(x, y)"""Main Code"""# 入力N = int(input())P = [Vector2(*map(frac, input().split())) for _ in [0] * N]# 点が1個のときは必ず答え1if(N == 1):print(1)exit(0)# 各点に番号付けph = {}pt_id = 0for p in P:ph[p] = pt_idpt_id += 1# 有り得る直線を調べて番号付けln_id = 0lh = {}for i in range(N - 1):for j in range(i + 1, N):p1, p2 = P[i], P[j]l = calc_line(p1, p2)if(l in lh):continuelh[l] = ln_idln_id += 1# 有り得る交点を調べて番号付けlis = list(lh.keys())for i in range(ln_id - 1):for j in range(i + 1, ln_id):l1, l2 = lis[i], lis[j]p = calc_intersection(l1, l2)if(p is None or p in ph):continueP.append(p)ph[p] = pt_idpt_id += 1# 任意の2点について、2点から構成されるベクトルを調べて正規化vec_lis = [[None]*pt_id for _ in [0]*pt_id]for i in range(pt_id - 1):for j in range(i + 1, pt_id):if(calc_line(P[i],P[j]) not in lh):continuevec_lis[i][j] = normalize_vector(P[j] - P[i])vec_lis[j][i] = normalize_vector(P[i] - P[j])# グラフ探索dp = [[[INF]*pt_id for _ in [0]*pt_id] for _ in [0]*(1 << N)]que = deque([])for i in range(N):que.append((0, 1 << i, i, i))dp[1 << i][i][i] = 0goal = (1 << N) - 1ans = INFwhile(que):c, b, lv, v = que.popleft()if(c > dp[b][lv][v]):continueif(b == goal):ans = cbreakfor nv in range(pt_id):if(v == nv or min(v, nv) >= N or (vec_lis[v][nv] is None)):continuenb = b | (1 << nv) if(nv < N) else bnc = cif(lv == v or vec_lis[lv][v] != vec_lis[v][nv]):nc += 1if(nc >= dp[nb][v][nv]):continuedp[nb][v][nv] = ncif(nc == c):que.appendleft((nc, nb, v, nv))else:que.append((nc, nb, v, nv))print(ans)