結果
問題 | No.2116 Making Forest Hard |
ユーザー | noimi |
提出日時 | 2022-10-14 04:37:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,796 ms / 8,000 ms |
コード長 | 57,086 bytes |
コンパイル時間 | 6,036 ms |
コンパイル使用メモリ | 353,420 KB |
実行使用メモリ | 496,248 KB |
最終ジャッジ日時 | 2024-06-26 12:24:54 |
合計ジャッジ時間 | 46,516 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 474 ms
27,860 KB |
testcase_03 | AC | 425 ms
27,776 KB |
testcase_04 | AC | 651 ms
261,956 KB |
testcase_05 | AC | 1,796 ms
28,280 KB |
testcase_06 | AC | 792 ms
399,476 KB |
testcase_07 | AC | 756 ms
363,952 KB |
testcase_08 | AC | 577 ms
346,948 KB |
testcase_09 | AC | 676 ms
415,912 KB |
testcase_10 | AC | 113 ms
6,944 KB |
testcase_11 | AC | 1,352 ms
22,936 KB |
testcase_12 | AC | 720 ms
389,324 KB |
testcase_13 | AC | 1,719 ms
27,992 KB |
testcase_14 | AC | 473 ms
29,092 KB |
testcase_15 | AC | 9 ms
5,376 KB |
testcase_16 | AC | 834 ms
496,128 KB |
testcase_17 | AC | 328 ms
21,212 KB |
testcase_18 | AC | 384 ms
23,400 KB |
testcase_19 | AC | 325 ms
202,236 KB |
testcase_20 | AC | 336 ms
157,912 KB |
testcase_21 | AC | 215 ms
15,220 KB |
testcase_22 | AC | 1,363 ms
23,712 KB |
testcase_23 | AC | 103 ms
57,600 KB |
testcase_24 | AC | 62 ms
6,940 KB |
testcase_25 | AC | 469 ms
203,836 KB |
testcase_26 | AC | 815 ms
496,248 KB |
testcase_27 | AC | 83 ms
8,576 KB |
testcase_28 | AC | 309 ms
19,236 KB |
testcase_29 | AC | 1,432 ms
23,948 KB |
testcase_30 | AC | 380 ms
22,764 KB |
testcase_31 | AC | 471 ms
11,076 KB |
testcase_32 | AC | 1,664 ms
28,232 KB |
testcase_33 | AC | 16 ms
5,376 KB |
testcase_34 | AC | 221 ms
125,300 KB |
testcase_35 | AC | 1,699 ms
27,992 KB |
testcase_36 | AC | 561 ms
347,928 KB |
testcase_37 | AC | 77 ms
6,944 KB |
testcase_38 | AC | 818 ms
480,356 KB |
testcase_39 | AC | 1,663 ms
28,340 KB |
testcase_40 | AC | 387 ms
10,164 KB |
testcase_41 | AC | 1,092 ms
20,268 KB |
testcase_42 | AC | 407 ms
23,976 KB |
testcase_43 | AC | 492 ms
27,828 KB |
testcase_44 | AC | 1,539 ms
26,892 KB |
testcase_45 | AC | 752 ms
15,712 KB |
testcase_46 | AC | 476 ms
27,932 KB |
testcase_47 | AC | 207 ms
83,456 KB |
testcase_48 | AC | 365 ms
9,808 KB |
testcase_49 | AC | 3 ms
6,940 KB |
testcase_50 | AC | 1,762 ms
28,056 KB |
testcase_51 | AC | 1,737 ms
28,396 KB |
testcase_52 | AC | 1,704 ms
28,448 KB |
testcase_53 | AC | 1,631 ms
28,244 KB |
testcase_54 | AC | 480 ms
28,800 KB |
ソースコード
#pragma region Macros #pragma comment(linker, "/stack:400000000") #if defined(noimi) && defined(_GLIBCXX_DEBUG) && defined(_GLIBCXX_DEBUG_PEDANTIC) #include <stdc++.h> #pragma GCC optimize("O3") #else #pragma GCC optimize("O2") // #pragma GCC optimize("unroll-loops") // #pragma GCC target("popcnt") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2,tune=native") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2") // #pragma GCC target("avx2") // #include <bits/stdc++.h> // #include <bits/stdc++.h> #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #endif #include <cstdint> #include <immintrin.h> #include <variant> #ifdef noimi #define oj_local(a, b) b #else #define oj_local(a, b) a #endif #define LOCAL if(oj_local(0, 1)) #define OJ if(oj_local(1, 0)) using namespace std; using ll = long long; using ull = unsigned long long int; using i128 = __int128_t; using pii = pair<int, int>; using pll = pair<ll, ll>; using ld = long double; template <typename T> using vc = vector<T>; template <typename T> using vvc = vector<vc<T>>; template <typename T> using vvvc = vector<vvc<T>>; using vi = vc<int>; using vl = vc<ll>; using vpi = vc<pii>; using vpl = vc<pll>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; template <typename T> int si(const T &x) { return x.size(); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vi iota(int n) { vi a(n); return iota(a.begin(), a.end(), 0), a; } template <typename T> vi iota(const vector<T> &a, bool greater = false) { vi res(a.size()); iota(res.begin(), res.end(), 0); sort(res.begin(), res.end(), [&](int i, int j) { if(greater) return a[i] > a[j]; return a[i] < a[j]; }); return res; } // macros #define overload5(a, b, c, d, e, name, ...) name #define overload4(a, b, c, d, name, ...) name #define endl '\n' #define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf) #define REP1(i, n) for(ll i = 0; i < (n); ++i) #define REP2(i, a, b) for(ll i = (a); i < (b); ++i) #define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__) #define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf) #define per1(i, n) for(ll i = (n)-1; i >= 0; --i) #define per2(i, a, b) for(ll i = (a)-1; i >= b; --i) #define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c)) #define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__) #define fore0(a) rep(a.size()) #define fore1(i, a) for(auto &&i : a) #define fore2(a, b, v) for(auto &&[a, b] : v) #define fore3(a, b, c, v) for(auto &&[a, b, c] : v) #define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v) #define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__) #define fi first #define se second #define pb push_back #define ppb pop_back #define ppf pop_front #define eb emplace_back #define drop(s) cout << #s << endl, exit(0) #define si(c) (int)(c).size() #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define rng(v, l, r) v.begin() + (l), v.begin() + (r) #define all(c) begin(c), end(c) #define rall(c) rbegin(c), rend(c) #define SORT(v) sort(all(v)) #define REV(v) reverse(all(v)) #define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end()) template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define overload2(_1, _2, name, ...) name #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}}; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; namespace yesno_impl { const string YESNO[2] = {"NO", "YES"}; const string YesNo[2] = {"No", "Yes"}; const string yesno[2] = {"no", "yes"}; const string firstsecond[2] = {"second", "first"}; const string FirstSecond[2] = {"Second", "First"}; const string possiblestr[2] = {"impossible", "possible"}; const string Possiblestr[2] = {"Impossible", "Possible"}; void YES(bool t = 1) { cout << YESNO[t] << endl; } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { cout << YesNo[t] << endl; } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { cout << yesno[t] << endl; } void no(bool t = 1) { yes(!t); } void first(bool t = 1) { cout << firstsecond[t] << endl; } void First(bool t = 1) { cout << FirstSecond[t] << endl; } void possible(bool t = 1) { cout << possiblestr[t] << endl; } void Possible(bool t = 1) { cout << Possiblestr[t] << endl; } }; // namespace yesno_impl using namespace yesno_impl; #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ IN(name) #define VEC2(type, name1, name2, size) \ vector<type> name1(size), name2(size); \ for(int i = 0; i < size; i++) IN(name1[i], name2[i]) #define VEC3(type, name1, name2, name3, size) \ vector<type> name1(size), name2(size), name3(size); \ for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i]) #define VEC4(type, name1, name2, name3, name4, size) \ vector<type> name1(size), name2(size), name3(size), name4(size); \ for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]); #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ IN(name) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); } template <class T> void scan(vector<T> &); template <class T> void scan(vector<T> &a) { for(auto &i : a) scan(i); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } template <typename T, typename S> T ceil(T x, S y) { assert(y); return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y)); } template <typename T, typename S> T floor(T x, S y) { assert(y); return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1))); } template <class T> T POW(T x, int n) { T res = 1; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } template <class T, class S> T POW(T x, S n, const ll &mod) { T res = 1; x %= mod; for(; n; n >>= 1, x = x * x % mod) if(n & 1) res = res * x % mod; return res; } vector<pll> factor(ll x) { vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0) { ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; } template <class T> vector<T> divisor(T x) { vector<T> ans; for(T i = 1; i * i <= x; i++) if(x % i == 0) { ans.pb(i); if(i * i != x) ans.pb(x / i); } return ans; } template <typename T> void zip(vector<T> &x) { vector<T> y = x; UNIQUE(y); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template <class S> void fold_in(vector<S> &v) {} template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) { for(auto e : a) v.emplace_back(e); fold_in(v, tail...); } template <class S> void renumber(vector<S> &v) {} template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) { for(auto &&e : a) e = lb(v, e); renumber(v, tail...); } template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) { vector<S> v; fold_in(v, head, args...); sort(all(v)), v.erase(unique(all(v)), v.end()); renumber(v, head, args...); return v; } template <typename T> vector<T> RUI(const vector<T> &v) { vector<T> res(v.size() + 1); for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i]; return res; } template <typename T> void zeta_subset(vector<T> &f) { int n = f.size(); for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i]; } template <typename T> void zeta_superset(vector<T> &f) { int n = f.size(); for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b]; } template <typename T> void mobius_subset(vector<T> &f) { int n = f.size(); for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i]; } template <typename T> void mobius_superset(vector<T> &f) { int n = f.size(); for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b]; } // 反時計周りに 90 度回転 template <typename T> void rot(vector<vector<T>> &v) { if(empty(v)) return; int n = v.size(), m = v[0].size(); vector res(m, vector<T>(n)); rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j]; v.swap(res); } // x in [l, r) template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; } // 便利関数 constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; } constexpr ll tri(ll n) { return n * (n + 1) / 2; } // l + ... + r constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; } ll max(int x, ll y) { return max((ll)x, y); } ll max(ll x, int y) { return max(x, (ll)y); } int min(int x, ll y) { return min((ll)x, y); } int min(ll x, int y) { return min(x, (ll)y); } // bit 演算系 ll pow2(int i) { return 1LL << i; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } // int allbit(int n) { return (1 << n) - 1; } constexpr ll mask(int n) { return (1LL << n) - 1; } // int popcount(signed t) { return __builtin_popcount(t); } // int popcount(ll t) { return __builtin_popcountll(t); } int popcount(uint64_t t) { return __builtin_popcountll(t); } static inline uint64_t popcount64(uint64_t x) { uint64_t m1 = 0x5555555555555555ll; uint64_t m2 = 0x3333333333333333ll; uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll; uint64_t h01 = 0x0101010101010101ll; x -= (x >> 1) & m1; x = (x & m2) + ((x >> 2) & m2); x = (x + (x >> 4)) & m4; return (x * h01) >> 56; } bool ispow2(int i) { return i && (i & -i) == i; } ll rnd(ll l, ll r) { //[l, r) #ifdef noimi static mt19937_64 gen; #else static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count()); #endif return uniform_int_distribution<ll>(l, r - 1)(gen); } ll rnd(ll n) { return rnd(0, n); } template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); } template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); } template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); } template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); } template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; } template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; } template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); } template <typename T> struct edge { int from, to; T cost; int id; edge(int to, T cost) : from(-1), to(to), cost(cost) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {} constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; } edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } friend ostream operator<<(ostream &os, edge &e) { return os << e.to; } }; template <typename T> using Edges = vector<edge<T>>; using Tree = vector<vector<int>>; using Graph = vector<vector<int>>; template <class T> using Wgraph = vector<vector<edge<T>>>; Graph getG(int n, int m = -1, bool directed = false, int margin = 1) { Tree res(n); if(m == -1) m = n - 1; while(m--) { int a, b; cin >> a >> b; a -= margin, b -= margin; res[a].emplace_back(b); if(!directed) res[b].emplace_back(a); } return res; } Graph getTreeFromPar(int n, int margin = 1) { Graph res(n); for(int i = 1; i < n; i++) { int a; cin >> a; res[a - margin].emplace_back(i); } return res; } template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) { Wgraph<T> res(n); if(m == -1) m = n - 1; while(m--) { int a, b; T c; scan(a), scan(b), scan(c); a -= margin, b -= margin; res[a].emplace_back(b, c); if(!directed) res[b].emplace_back(a, c); } return res; } void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); } template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); } #define TEST \ INT(testcases); \ while(testcases--) i128 abs(const i128 &x) { return x > 0 ? x : -x; } istream &operator>>(istream &is, i128 &v) { string s; is >> s; v = 0; for(int i = 0; i < (int)s.size(); i++) { if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; } } if(s[0] == '-') { v *= -1; } return is; } ostream &operator<<(ostream &os, const i128 &v) { if(v == 0) { return (os << "0"); } i128 num = v; if(v < 0) { os << '-'; num = -num; } string s; for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); } reverse(s.begin(), s.end()); return (os << s); } namespace aux { template <typename T, unsigned N, unsigned L> struct tp { static void output(std::ostream &os, const T &v) { os << std::get<N>(v) << (&os == &cerr ? ", " : " "); tp<T, N + 1, L>::output(os, v); } }; template <typename T, unsigned N> struct tp<T, N, N> { static void output(std::ostream &os, const T &v) { os << std::get<N>(v); } }; } // namespace aux template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) { if(&os == &cerr) { os << '('; } aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t); if(&os == &cerr) { os << ')'; } return os; } template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) { if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; } return os << p.first << " " << p.second; } template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) { bool f = true; if(&os == &cerr) os << "["; for(auto &y : x) { if(&os == &cerr) os << (f ? "" : ", ") << y; else os << (f ? "" : " ") << y; f = false; } if(&os == &cerr) os << "]"; return os; } #ifdef noimi #undef endl void debug() { cerr << endl; } void debug(bool) { cerr << endl; } template <class Head, class... Tail> void debug(bool is_front, Head head, Tail... tail) { if(!is_front) cerr << ", "; cerr << head; debug(false, tail...); } #define dump(args...) \ { \ vector<string> _debug = _split(#args, ','); \ err(true, begin(_debug), args); \ } vector<string> _split(const string &s, char c) { vector<string> v; stringstream ss(s); string x; while(getline(ss, x, c)) { if(empty(v)) v.eb(x); else { bool flag = false; for(auto [c, d] : {pair('(', ')'), pair('[', ']'), pair('{', '}')}) { if(count(all(v.back()), c) != count(all(v.back()), d)) flag = true; } if(flag) v.back() += "," + x; else v.eb(x); } } return move(v); } void err(bool, vector<string>::iterator) { cerr << endl; } template <typename T, typename... Args> void err(bool is_front, vector<string>::iterator it, T a, Args... args) { if(!is_front) cerr << ", "; cerr << it->substr((*it)[0] == ' ', (*it).size()) << " = " << a, err(false, ++it, args...); } // #define dump(...) cerr << #__VA_ARGS__ << " : ", debug(true, __VA_ARGS__) #else #define dump(...) static_cast<void>(0) #define dbg(...) static_cast<void>(0) #endif void OUT() { cout << endl; } template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) { cout << head; if(sizeof...(tail)) cout << ' '; OUT(tail...); } template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2; template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>}; template <class F> struct REC { F f; REC(F &&f_) : f(std::forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, std::forward<Args>(args)...); } }; template <class S> vector<pair<S, int>> runLength(const vector<S> &v) { vector<pair<S, int>> res; for(auto &e : v) { if(res.empty() or res.back().fi != e) res.eb(e, 1); else res.back().se++; } return res; } vector<pair<char, int>> runLength(const string &v) { vector<pair<char, int>> res; for(auto &e : v) { if(res.empty() or res.back().fi != e) res.eb(e, 1); else res.back().se++; } return res; } int toint(const char &c, const char start = 'a') { return c - start; } int toint(const char &c, const string &chars) { return find(all(chars), c) - begin(chars); } int alphabets_to_int(const char &c) { return (islower(c) ? c - 'a' : c - 'A' + 26); } template <typename T> auto toint(const T &v, const char &start = 'a') { vector<decltype(toint(v[0]))> ret; ret.reserve(v.size()); for(auto &&e : v) ret.emplace_back(toint(e, start)); return ret; } template <typename T> auto toint(const T &v, const string &start) { vector<decltype(toint(v[0]))> ret; ret.reserve(v.size()); for(auto &&e : v) ret.emplace_back(toint(e, start)); return ret; } // a -> 0, A -> 26 template <typename T> auto alphabets_to_int(const T &s) { vector<decltype(alphabets_to_int(s[0]))> res; res.reserve(s.size()); for(auto &&e : s) { res.emplace_back(alphabets_to_int(e)); } return res; } template <class T, class F> T bin_search(T ok, T ng, const F &f) { while(abs(ok - ng) > 1) { T mid = ok + ng >> 1; (f(mid) ? ok : ng) = mid; } return ok; } template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) { while(iter--) { T mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(11); } } setup_io; #pragma endregion namespace modular { constexpr int MOD = 998244353; const int MAXN = 11000000; template <int Modulus> class modint; using mint = modint<MOD>; using vmint = vector<mint>; vector<mint> Inv; mint inv(int x); template <int Modulus> class modint { public: static constexpr int mod() { return Modulus; } int a; constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {} constexpr int &val() noexcept { return a; } constexpr const int &val() const noexcept { return a; } constexpr modint operator-() const noexcept { return modint() - *this; } constexpr modint operator+() const noexcept { return *this; } constexpr modint &operator++() noexcept { if(++a == MOD) a = 0; return *this; } constexpr modint &operator--() noexcept { if(!a) a = MOD; a--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { mint res = *this; --*this; return res; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if(a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if(a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = (long long)a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(const modint rhs) noexcept { a = (long long)a * (modular::inv(rhs.a)).a % Modulus; return *this; } constexpr modint pow(long long n) const noexcept { if(n < 0) { n %= Modulus - 1; n = (Modulus - 1) + n; } modint x = *this, r = 1; while(n) { if(n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr modint inv() const noexcept { return pow(Modulus - 2); } constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); } constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); } constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); } constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); } constexpr friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; } constexpr friend bool operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; } // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); } }; vmint Fact{1, 1}, Ifact{1, 1}; mint inv(int n) { if(n > MAXN) return (mint(n)).pow(MOD - 2); if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1); if(Inv.size() > n) return Inv[n]; else { for(int i = Inv.size(); i <= n; ++i) { auto [y, x] = div(int(MOD), i); Inv.emplace_back(Inv[x] * (-y)); } return Inv[n]; } } mint fact(int n) { if(Fact.size() > n) return Fact[n]; else for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i); return Fact[n]; } mint ifact(int n) { if(Ifact.size() > n) return Ifact[n]; else for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i)); return Ifact[n]; } mint modpow(ll a, ll n) { return mint(a).pow(n); } mint inv(mint a) { return inv(a.a); } mint ifact(mint a) { return ifact(a.a); } mint fact(mint a) { return fact(a.a); } mint modpow(mint a, ll n) { return modpow(a.a, n); } mint C(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i, res /= i + 1; return res; } return fact(a) * ifact(b) * ifact(a - b); } mint P(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; if(a > MAXN) { mint res = 1; rep(i, b) res *= a - i; return res; } return fact(a) * ifact(a - b); } ostream &operator<<(ostream &os, mint a) { os << a.a; return os; } istream &operator>>(istream &is, mint &a) { ll x; is >> x; a = x; return is; } ostream &operator<<(ostream &os, const vmint &a) { if(!a.empty()) { os << a[0]; for(int i = 1; i < si(a); i++) os << " " << a[i]; } return os; } #ifdef _MSC_VER #include <intrin.h> #endif namespace convolution { namespace internal { int ceil_pow2(int n) { int x = 0; while((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } constexpr long long safe_mod(long long x, long long m) { x %= m; if(x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if(_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while(n) { if(n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if(n <= 1) return false; if(n == 2 || n == 7 || n == 61) return true; if(n % 2 == 0) return false; long long d = n - 1; while(d % 2 == 0) d /= 2; for(long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while(t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while(x % 2 == 0) x /= 2; for(int i = 3; (long long)(i)*i <= x; i += 2) { if(x % i == 0) { divs[cnt++] = i; while(x % i == 0) { x /= i; } } } if(x > 1) { divs[cnt++] = x; } for(int g = 2;; g++) { bool ok = true; for(int i = 0; i < cnt; i++) { if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if(ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); void butterfly(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if(first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for(int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for(int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for(int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } void butterfly_inv(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if(first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for(int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for(int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for(int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for(int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } mint z = mint(n).inv(); for(int i = 0; i < n; i++) a[i] *= z; } } // namespace internal std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(std::min(n, m) <= 60) { if(n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for(int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); // mint iz = mint(z).inv(); // for(int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace convolution using Poly = vmint; Poly low(const Poly &f, int s) { return Poly(f.begin(), f.begin() + min<int>(max(s, 1), f.size())); } Poly operator-(Poly f) { for(auto &&e : f) e = -e; return f; } Poly &operator+=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] += r[i]; return l; } Poly operator+(Poly l, const Poly &r) { return l += r; } Poly &operator-=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] -= r[i]; return l; } Poly operator-(Poly l, const Poly &r) { return l -= r; } Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; } Poly operator<<(Poly f, size_t n) { return f <<= n; } Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; } Poly operator>>(Poly f, size_t n) { return f >>= n; } Poly operator*(const Poly &l, const Poly &r) { return convolution::convolution(l, r); } Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; } Poly &operator*=(Poly &l, const mint &x) { for(auto &e : l) e *= x; return l; } Poly operator*(const Poly &l, const mint &x) { auto res = l; return res *= x; } Poly inv(const Poly &f, int s = -1) { if(s == -1) s = f.size(); Poly r(s); r[0] = mint(1) / f[0]; for(int n = 1; n < s; n *= 2) { auto F = low(f, 2 * n); F.resize(2 * n); convolution::internal::butterfly(F); auto g = low(r, 2 * n); g.resize(2 * n); convolution::internal::butterfly(g); rep(i, 2 * n) F[i] *= g[i]; convolution::internal::butterfly_inv(F); rep(i, n) F[i] = 0; convolution::internal::butterfly(F); rep(i, 2 * n) F[i] *= g[i]; convolution::internal::butterfly_inv(F); rep(i, n, min(2 * n, s)) r[i] -= F[i]; } return r; } Poly integ(const Poly &f) { Poly res(f.size() + 1); for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i; return res; } Poly deriv(const Poly &f) { if(f.size() == 0) return Poly(); Poly res(f.size() - 1); rep(i, res.size()) res[i] = f[i + 1] * (i + 1); return res; } Poly log(const Poly &f) { Poly g = integ(inv(f) * deriv(f)); return Poly{g.begin(), g.begin() + f.size()}; } Poly exp(const Poly &f) { Poly g{1}; while(g.size() < f.size()) { Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2)); x[0] += 1; g.resize(2 * g.size()); x -= log(g); x *= {g.begin(), g.begin() + g.size() / 2}; rep(i, g.size() / 2, min<int>(x.size(), g.size())) g[i] = x[i]; } return {g.begin(), g.begin() + f.size()}; } Poly pow(const Poly &f, ll k, int need = -1) { const int n = (int)f.size(); if(need == -1) need = n; int z = 0; rep(i, n) { if(f[i].a) break; z++; } if(z * k >= need) return Poly(n); mint rev = f[z].inv(); Poly res = exp(log((f >> z) * rev) * k) * f[z].pow(k); res.resize(need - z * k); return res << z * k; } struct Prd { deque<Poly> deq; Prd() = default; void emplace(const Poly &f) { deq.emplace_back(f); } Poly calc() { if(deq.empty()) return {1}; sort(all(deq), [&](const Poly &f, const Poly &g) { return si(f) < si(g); }); while(deq.size() > 1) { deq.emplace_back(deq[0] * deq[1]); for(int i = 0; i < 2; ++i) deq.pop_front(); } return deq.front(); } }; Poly prd(vector<Poly> &v) { Prd p; for(auto &e : v) p.emplace(e); return p.calc(); } vmint power_table(mint x, int len) { vmint res(len + 1); res[0] = 1; rep(i, len) res[i + 1] = res[i] * x; return res; } // calc f(x + a) Poly TaylorShift(Poly f, mint a) { int n = f.size(); rep(i, n) f[i] *= fact(i); reverse(all(f)); Poly g(n, 1); rep(i, 1, n) g[i] = g[i - 1] * a * inv(i); f = (f * g); f.resize(n); reverse(begin(f), end(f)); rep(i, n) f[i] *= ifact(i); return f; } // ボールの数、一個以上必要な数、入っていなくてもいい数(区別あり) mint choose(int num, int a, int b = 0) { return C(num + b - 1, a + b - 1); } } // namespace modular using namespace modular; // https://hitonanode.github.io/cplib-cpp/number/dual_number.hpp namespace dual_number_ { struct has_id_method_impl { template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type()); template <class T_> static auto check(...) -> std::false_type; }; template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {}; } // namespace dual_number_ // Dual number (二重数) // Verified: https://atcoder.jp/contests/abc235/tasks/abc235_f template <class T> struct DualNumber { T a, b; // a + bx template <typename T2, typename std::enable_if<dual_number_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2::id(); } template <typename T2, typename std::enable_if<!dual_number_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2(1); } DualNumber(T x = T(), T y = T()) : a(x), b(y) {} static DualNumber id() { return DualNumber(_T_id<T>(), T()); } explicit operator bool() const { return a != T() or b != T(); } DualNumber operator+(const DualNumber &x) const { return DualNumber(a + x.a, b + x.b); } DualNumber operator-(const DualNumber &x) const { return DualNumber(a - x.a, b - x.b); } DualNumber operator*(const DualNumber &x) const { return DualNumber(a * x.a, b * x.a + a * x.b); } DualNumber operator/(const DualNumber &x) const { T cinv = _T_id<T>() / x.a; return DualNumber(a * cinv, (b * x.a - a * x.b) * cinv * cinv); } DualNumber operator-() const { return DualNumber(-a, -b); } DualNumber &operator+=(const DualNumber &x) { return *this = *this + x; } DualNumber &operator-=(const DualNumber &x) { return *this = *this - x; } DualNumber &operator*=(const DualNumber &x) { return *this = *this * x; } DualNumber &operator/=(const DualNumber &x) { return *this = *this / x; } bool operator==(const DualNumber &x) const { return a == x.a and b == x.b; } bool operator!=(const DualNumber &x) const { return !(*this == x); } bool operator<(const DualNumber &x) const { return (a != x.a ? a < x.a : b < x.b); } // template <class OStream> friend OStream &operator<<(OStream &os, const DualNumber &x) { return os << '{' << x.a << ',' << x.b << '}'; } }; template <class T> ostream &operator<<(ostream &os, const DualNumber<T> &d) { return os << "(" << d.a << ", " << d.b << ")"; } using D = DualNumber<mint>; template <typename G> struct HLDecomposition { G &g; vector<int> sz, in, out, head, rev, par, d, vis, roots; HLDecomposition(G &g, vector<int> r = vector<int>()) : g(g), d(g.size()), sz(g.size()), in(g.size()), out(g.size()), head(g.size()), rev(g.size()), par(g.size()) { if(empty(r)) { vector<bool> vis(g.size()); for(int i = 0; i < g.size(); i++) { if(vis[i]) continue; roots.emplace_back(i); queue<int> q; q.emplace(i); while(!empty(q)) { int x = q.front(); vis[x] = true; q.pop(); for(auto e : g[x]) { if(!vis[e]) q.emplace(e); } } } } else roots = r; } void dfs_sz(int idx, int p) { par[idx] = p; sz[idx] = 1; if(g[idx].size() and g[idx][0] == p) swap(g[idx][0], g[idx].back()); for(auto &to : g[idx]) { if(to == p) continue; d[to] = d[idx] + 1; dfs_sz(to, idx); sz[idx] += sz[to]; if(sz[g[idx][0]] < sz[to]) swap(g[idx][0], to); } } void dfs_hld(int idx, int par, int ×) { in[idx] = times++; rev[in[idx]] = idx; for(auto &to : g[idx]) { if(to == par) continue; head[to] = (g[idx][0] == to ? head[idx] : to); dfs_hld(to, idx, times); } out[idx] = times; } template <typename T> void dfs_hld(int idx, int par, int ×, vector<T> &v) { in[idx] = times++; rev[in[idx]] = idx; for(auto &to : g[idx]) { if(to == par) { v[in[idx]] = to.cost; continue; } head[to] = (g[idx][0] == to ? head[idx] : to); dfs_hld(to, idx, times, v); } out[idx] = times; } template <typename T> void dfs_hld(int idx, int par, int ×, vector<T> &v, vector<T> &a) { in[idx] = times++; rev[in[idx]] = idx; v[in[idx]] = a[idx]; for(auto &to : g[idx]) { if(to == par) continue; head[to] = (g[idx][0] == to ? head[idx] : to); dfs_hld(to, idx, times, v, a); } out[idx] = times; } void build() { int t = 0; for(auto root : roots) { head[root] = root; dfs_sz(root, -1); dfs_hld(root, -1, t); } } template <typename T> vector<T> build(int root = 0) { vector<T> res(g.size()); int t = 0; for(auto root : roots) { head[root] = root; dfs_sz(root, -1); dfs_hld(root, -1, t, res); } return res; } template <typename T> vector<T> build(vector<T> &a, int root = 0) { vector<T> res(g.size()); for(auto root : roots) { head[root] = root; dfs_sz(root, -1); int t = 0; dfs_hld(root, -1, t, res, a); } return res; } int la(int v, int k) { while(1) { int u = head[v]; if(in[v] - k >= in[u]) return rev[in[v] - k]; k -= in[v] - in[u] + 1; v = par[u]; } } int lca(int u, int v) { for(;; v = par[head[v]]) { if(in[u] > in[v]) swap(u, v); if(head[u] == head[v]) return u; } } template <typename T, typename Q, typename F> T query(int u, int v, const T &e, const Q &q, const F &f, bool edge = false) { T l = e, r = e; for(;; v = par[head[v]]) { if(in[u] > in[v]) swap(u, v), swap(l, r); if(head[u] == head[v]) break; l = f(q(in[head[v]], in[v] + 1), l); } return f(f(q(in[u] + edge, in[v] + 1), l), r); } template <typename T, typename Q, typename Q2, typename F> T query(int u, int v, const T &e, const Q &q1, const Q2 &q2, const F &f, bool edge = false) { T l = e, r = e; for(;;) { if(head[u] == head[v]) break; if(in[u] > in[v]) { l = f(l, q2(in[head[u]], in[u] + 1)); u = par[head[u]]; } else { r = f(q1(in[head[v]], in[v] + 1), r); v = par[head[v]]; } } if(in[u] > in[v]) return f(f(l, q2(in[v] + edge, in[u] + 1)), r); return f(f(l, q1(in[u] + edge, in[v] + 1)), r); } template <typename Q> void add(int u, int v, const Q &q, bool edge = false) { for(;; v = par[head[v]]) { if(in[u] > in[v]) swap(u, v); if(head[u] == head[v]) break; q(in[head[v]], in[v] + 1); } q(in[u] + edge, in[v] + 1); } constexpr int operator[](int k) { return in[k]; } constexpr int dist(int u, int v) { return d[u] + d[v] - 2 * d[lca(u, v)]; } // u -> v の unique path vector<int> road(int u, int v) { int l = lca(u, v); vector<int> a, b; for(; v != l; v = par[v]) b.eb(v); for(; u != l; u = par[u]) a.eb(u); a.eb(l); per(i, si(b), 0) a.eb(b[i]); return a; } int jump(int s, int t, int i) { if(!i) return s; int l = lca(s, t); int dst = d[s] + d[t] - d[l] * 2; if(dst < i) return -1; if(d[s] - d[l] >= i) return la(s, i); i -= d[s] - d[l]; return la(t, d[t] - d[l] - i); } }; template <class T> struct VectorPool { vector<T> pool; vector<T *> stock; int ptr; VectorPool() = default; VectorPool(int sz) : pool(sz), stock(sz) {} inline T *alloc() { return stock[--ptr]; } inline void free(T *t) { stock[ptr++] = t; } void clear() { ptr = (int)pool.size(); for(int i = 0; i < pool.size(); i++) stock[i] = &pool[i]; } }; template <class Monoid, class OperatorMonoid = Monoid> struct RandomizedBinarySearchTree { using F = function<Monoid(Monoid, Monoid)>; using G = function<Monoid(Monoid, OperatorMonoid)>; using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>; using P = function<OperatorMonoid(OperatorMonoid, int)>; inline int xor128() { static int x = 123456789; static int y = 362436069; static int z = 521288629; static int w = 88675123; int t; t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } struct Node { Node *l, *r; int cnt; Monoid key, sum; OperatorMonoid lazy; Node() = default; Node(const Monoid &k, const OperatorMonoid &p) : cnt(1), key(k), sum(k), lazy(p), l(nullptr), r(nullptr) {} }; VectorPool<Node> pool; // vector<Node> pool; int ptr; const Monoid M1; const OperatorMonoid OM0; const F f; const G g; const H h; const P p; RandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1) : pool(sz), ptr(0), f(f), g(G()), h(H()), p(P()), M1(M1), OM0(OperatorMonoid()) {} RandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h, const P &p, const Monoid &M1, const OperatorMonoid &OM0) : pool(sz), ptr(0), f(f), g(g), h(h), p(p), M1(M1), OM0(OM0) { pool.clear(); } inline Node *alloc(const Monoid &key) { return &(*pool.alloc() = Node(key, OM0)); } virtual Node *clone(Node *t) { return t; } inline int count(const Node *t) { return t ? t->cnt : 0; } inline Monoid sum(const Node *t) { return t ? t->sum : M1; } inline Node *update(Node *t) { t->cnt = count(t->l) + count(t->r) + 1; t->sum = f(f(sum(t->l), t->key), sum(t->r)); return t; } Node *propagate(Node *t) { t = clone(t); if(t->lazy != OM0) { t->key = g(t->key, p(t->lazy, 1)); if(t->l) { t->l = clone(t->l); t->l->lazy = h(t->l->lazy, t->lazy); t->l->sum = g(t->l->sum, p(t->lazy, count(t->l))); } if(t->r) { t->r = clone(t->r); t->r->lazy = h(t->r->lazy, t->lazy); t->r->sum = g(t->r->sum, p(t->lazy, count(t->r))); } t->lazy = OM0; } return update(t); } Node *merge(Node *l, Node *r) { if(!l || !r) return l ? l : r; if(xor128() % (l->cnt + r->cnt) < l->cnt) { l = propagate(l); l->r = merge(l->r, r); return update(l); } else { r = propagate(r); r->l = merge(l, r->l); return update(r); } } pair<Node *, Node *> split(Node *t, int k) { if(!t) return {t, t}; t = propagate(t); if(k <= count(t->l)) { auto s = split(t->l, k); t->l = s.second; return {s.first, update(t)}; } else { auto s = split(t->r, k - count(t->l) - 1); t->r = s.first; return {update(t), s.second}; } } Node *build(int l, int r, const vector<Monoid> &v) { if(l + 1 >= r) return alloc(v[l]); return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v)); } Node *build(const vector<Monoid> &v) { ptr = 0; return build(0, (int)v.size(), v); } void ddump(Node *r, typename vector<Monoid>::iterator &it) { if(!r) return; r = propagate(r); ddump(r->l, it); *it = r->key; ddump(r->r, ++it); } vector<Monoid> ddump(Node *r) { vector<Monoid> v((size_t)count(r)); auto it = begin(v); ddump(r, it); return v; } string to_string(Node *r) { auto s = ddump(r); string ret; for(int i = 0; i < s.size(); i++) ret += ", "; return (ret); } void insert(Node *&t, int k, const Monoid &v) { auto x = split(t, k); t = merge(merge(x.first, alloc(v)), x.second); } void erase(Node *&t, int k) { auto x = split(t, k); auto y = split(x.second, 1); pool.free(y.first); t = merge(x.first, y.second); } Monoid query(Node *&t, int a, int b) { auto x = split(t, a); auto y = split(x.second, b - a); auto ret = sum(y.first); t = merge(x.first, merge(y.first, y.second)); return ret; } void set_propagate(Node *&t, int a, int b, const OperatorMonoid &p) { auto x = split(t, a); auto y = split(x.second, b - a); y.first->lazy = h(y.first->lazy, p); t = merge(x.first, merge(propagate(y.first), y.second)); } void set_element(Node *&t, int k, const Monoid &x) { t = propagate(t); if(k < count(t->l)) set_element(t->l, k, x); else if(k == count(t->l)) t->key = t->sum = x; else set_element(t->r, k - count(t->l) - 1, x); t = update(t); } int size(Node *t) { return count(t); } bool empty(Node *t) { return !t; } Node *makeset() { return nullptr; } Monoid kth_element(Node *t, int k) { if(k < count(t->l)) return kth_element(t->l, k); if(k == count(t->l)) return t->key; return kth_element(t->r, k - count(t->l) - 1); } virtual void insert_key(Node *&t, const Monoid &x) { insert(t, lower_bound(t, x), x); } int lower_bound(Node *t, const Monoid &x) { if(!t) return 0; if(!(t->key < x)) return lower_bound(t->l, x); return lower_bound(t->r, x) + count(t->l) + 1; } }; struct S { D d; int x; mint sum, sum2; const bool operator<(const S &r) const { return x < r.x; } }; ostream &operator<<(ostream &os, S s) { return os << "{" << "(" << s.d.a << ", " << s.d.b << "), " << s.x << ", " << s.sum << ", " << s.sum2 << "}"; } int main() { INT(n); VEC(int, a, n); auto g = getG(n); HLDecomposition hld(g); hld.build(); auto F = [](S x, S y) { return S{x.d + y.d, max(x.x, y.x), x.sum + y.sum, x.sum2 + y.sum2}; }; auto G = [](S x, D y) { return S{x.d * y, x.x, x.sum * y.a + x.sum2 * y.b, x.sum2 * y.a}; }; auto H = [](D x, D y) { return x * y; }; auto P = [](D x, int) { return x; }; RandomizedBinarySearchTree<S, D> s(n * 2, F, G, H, P, S{D(), 0, 0}, D(1, 0)); mint ans; auto insert = [&](decltype(s)::Node *&n, const S &x) { int k = s.lower_bound(n, x); if(k == s.count(n)) s.insert(n, k, x); else { auto y = s.kth_element(n, k); // dump(x, y); if(y.x == x.x) s.set_element(n, k, F(x, y)); else { s.insert(n, k, x); // dump(s.count(n)); } } }; REC([&](auto &&f, int x, int p) -> decltype(s)::Node * { auto res = s.makeset(); s.insert(res, 0, S{D(1, 1), a[x], a[x], a[x]}); fore(e, g[x]) { if(e == p) continue; auto v = f(e, x); if(s.count(res) < s.count(v)) swap(res, v); vector<S> w = s.ddump(v); int pre = -1; D d{}; fore(e, w) d += e.d; per(i, si(w)) { int l = s.lower_bound(res, w[i]); int r = (i == si(w) - 1 ? s.count(res) : pre); pre = l; if(l < r) s.set_propagate(res, l, r, d); d -= w[i].d; w[i] = G(w[i], s.query(res, 0, l).d); } while(s.count(res) and s.kth_element(res, 0).x < w[0].x) s.erase(res, 0); while(s.count(v)) s.erase(v, 0); fore(e, w) insert(res, e); } mint K = mint(2).pow(n - 1 - hld.sz[x]); if(p == -1) K = 1; ans += K * s.query(res, 0, s.count(res)).sum; auto now = S{D(mint(2).pow(hld.sz[x] - 1), 0), 0, 0, 0}; s.insert(res, 0, now); return res; }) (0, -1); // fore(x, y, res) { // dump(x, y.a, y.b); // ans += x * y.b; // } OUT(ans); }