結果
問題 | No.2100 [Cherry Alpha C] Two-way Steps |
ユーザー |
|
提出日時 | 2022-10-14 22:44:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,689 bytes |
コンパイル時間 | 2,816 ms |
コンパイル使用メモリ | 225,004 KB |
最終ジャッジ日時 | 2025-02-08 04:30:33 |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 38 WA * 4 TLE * 6 |
ソースコード
#pragma GCC optimize("O3")#include <bits/stdc++.h>// clang-format offusing namespace std;using ll = long long int;#define all(v) (v).begin(),(v).end()#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))#define upto(cnt,b,e,step) for(auto cnt=(b);(cnt)<=(e);(cnt)+=(step))#define downto(cnt,b,e,step) for(auto cnt=(b);(e)<=(cnt);(cnt)-=(step))const long long MD = 998244353; const long double PI = 3.1415926535897932384626433832795L;template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')';return o; }template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }void bye(string s, int code = 0) { cout << s << endl; exit(code); }mt19937_64 randdev(8901016);template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>static ostream& operator<<(ostream& o, const std::vector<T>& v) {o << "[ "; for(const auto& e : v) o<<e<<' '; return o << ']';}template <typename I> struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };template<typename I> static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {o << "[ "; iterate(i,f.b,f.e) o<<*i<<' '; return o << ']';}template <typename I> struct MyMatrixFormat{const I& p; long long n, m;MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}};template<typename I> static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {o<<'\n'; repeat(i,(f.n)) { repeat(j,f.m) o<<f.p[i][j]<<' '; o<<'\n'; }return o;}struct LOG_t { ~LOG_t() { cout << endl; } };#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))#define FMTV(v) FMTR(v.begin(),v.end())#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))#if defined(_WIN32) || defined(_WIN64)#define getc_x _getc_nolock#define putc_x _putc_nolock#elif defined(__GNUC__)#define getc_x getc_unlocked#define putc_x putc_unlocked#else#define getc_x getc#define putc_x putc#endifclass MaiScanner {FILE* fp_;constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }public:inline MaiScanner(FILE* fp):fp_(fp){}template<typename T> void input_integer(T& var) noexcept {var = 0; T sign = 1;int cc = getc_x(fp_);for (; cc < '0' || '9' < cc; cc = getc_x(fp_))if (cc == '-') sign = -1;for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))var = (var << 3) + (var << 1) + cc - '0';var = var * sign;}inline int c() noexcept { return getc_x(fp_); }template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }inline MaiScanner& operator>>(string& var) {int cc = getc_x(fp_);for (; !isvisiblechar(cc); cc = getc_x(fp_));for (; isvisiblechar(cc); cc = getc_x(fp_))var.push_back(cc);return *this;}template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }};class MaiPrinter {FILE* fp_;public:inline MaiPrinter(FILE* fp):fp_(fp){}template<typename T>void output_integer(T var) noexcept {if (var == 0) { putc_x('0', fp_); return; }if (var < 0)putc_x('-', fp_),var = -var;char stack[32]; int stack_p = 0;while (var)stack[stack_p++] = '0' + (var % 10),var /= 10;while (stack_p)putc_x(stack[--stack_p], fp_);}inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }inline MaiPrinter& operator<<(const char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }inline MaiPrinter& operator<<(const string& str) {const char* p = str.c_str();const char* l = p + str.size();while (p < l) putc_x(*p++, fp_);return *this;}template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin :*this << *begin; }};MaiScanner scanner(stdin);MaiPrinter printer(stdout);// clang-format onclass Graph {public:int n;vector<vector<int>> vertex_to;explicit Graph(int n = 1) : n(n), vertex_to(n) {}inline int size() const { return n; }void resize(int _n) { vertex_to.resize(n = _n); }void connect(int from, int to) {vertex_to[(int)from].emplace_back(to);vertex_to[(int)to].emplace_back(from);}};//int N, M;int H[200010];Graph graph;//ll visited[200010][2];ll solve(bool rule_inc) {const int start = rule_inc ? 0 : N - 1;const int goal = rule_inc ? N-1 : 0;fill(visited[0], visited[N], -1);priority_queue<pair<ll, pair<int, bool>>> que;que.emplace(0, make_pair(start, false));visited[start][false] = 0;while (!que.empty()) {auto h = que.top().first;auto v = que.top().second.first;auto inc = que.top().second.second;que.pop();if (visited[v][inc] > h) continue;for (auto to : graph.vertex_to[v]) {if ((v < to) ^ rule_inc) continue;if (H[v] < H[to]) {auto h2 = h + H[to]-H[v];if (!inc && visited[to][inc] < h2) {visited[to][inc] = h2;que.emplace(h2, make_pair(to, true));}} else if (H[v] > H[to]) {if (visited[to][inc] < h) {visited[to][inc] = h;que.emplace(h, make_pair(to, false));}}}}return max(visited[goal][true], visited[goal][false]);}int main() {scanner >> N >> M;scanner.in(H, H+N);graph.resize(N);repeat(i, M) {int a, b;scanner >> a >> b;--a; --b;graph.connect(a, b);}cout << solve(true) << endl << solve(false) << endl;return 0;}