結果

問題 No.2101 [Cherry Alpha N] ずっとこの数列だったらいいのに
ユーザー ruthen71ruthen71
提出日時 2022-10-15 00:38:13
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 750 ms / 6,000 ms
コード長 7,395 bytes
コンパイル時間 2,518 ms
コンパイル使用メモリ 214,304 KB
最終ジャッジ日時 2025-02-08 05:30:51
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#ifdef _RUTHEN
#include <debug.hpp>
#else
#define show(...) true
#endif
using ll = long long;
#define rep(i, n) for (int i = 0; i < (n); i++)
template <class T> using V = vector<T>;
template <class T> struct lazy_sum_add {
using S = std::pair<T, int>;
using F = T;
using value_type_S = S;
using value_type_F = F;
static constexpr S op(S a, S b) { return {a.first + b.first, a.second + b.second}; }
static constexpr S e() { return {0, 0}; }
static constexpr S mapping(F f, S x) { return {x.first + f * x.second, x.second}; }
static constexpr F composition(F f, F g) { return f + g; }
static constexpr F id() { return 0; }
};
template <class Lazy> struct lazy_segment_tree {
public:
using S = typename Lazy::value_type_S;
using F = typename Lazy::value_type_F;
lazy_segment_tree(int n) : lazy_segment_tree(std::vector<S>(n, Lazy::e())) {}
lazy_segment_tree(const std::vector<S>& v) : _n((int)v.size()) {
log = 0;
while ((1U << log) < (unsigned int)(_n)) log++;
size = 1 << log;
d = std::vector<S>(size << 1, Lazy::e());
lz = std::vector<F>(size, Lazy::id());
for (int i = 0; i < _n; i++) d[i + size] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, const S& x) {
assert(0 <= p and p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i); //
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i); //
}
void chset(int p, const S& x) {
assert(0 <= p and p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i); //
d[p] = Lazy::op(d[p], x);
for (int i = 1; i <= log; i++) update(p >> i); //
}
S operator[](int p) {
assert(0 <= p and p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i); //
return d[p];
}
S get(int p) {
assert(0 <= p and p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i); //
return d[p];
}
S prod(int l, int r) {
assert(0 <= l and l <= r and r <= _n);
if (l == r) return Lazy::e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = Lazy::e(), smr = Lazy::e();
while (l < r) {
if (l & 1) sml = Lazy::op(sml, d[l++]);
if (r & 1) smr = Lazy::op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return Lazy::op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, const F& f) {
assert(0 <= p and p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = Lazy::mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, const F& f) {
assert(0 <= l and l <= r and r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <class G> int max_right(int l, G& g) {
assert(0 <= l && l <= _n);
assert(g(Lazy::e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = Lazy::e();
do {
while ((l & 1) == 0) l >>= 1;
if (!g(Lazy::op(sm, d[l]))) {
while (l < size) {
push(l);
l <<= 1;
if (g(Lazy::op(sm, d[l]))) {
sm = Lazy::op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = Lazy::op(sm, d[l]);
l++;
} while ((l & -l) != l); // 20false
return _n;
}
template <class G> int min_left(int r, G& g) {
assert(0 <= r && r <= _n);
assert(g(Lazy::e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = Lazy::e();
do {
r--;
while (r > 1 && (r & 1)) r >>= 1;
if (!g(Lazy::op(d[r], sm))) {
while (r < size) {
push(r);
r = (r << 1) | 1;
if (g(Lazy::op(d[r], sm))) {
sm = Lazy::op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = Lazy::op(d[r], sm);
} while ((r & -r) != r); // 20false
return 0;
}
private:
int _n, log, size;
std::vector<S> d;
std::vector<F> lz;
inline void update(int k) { d[k] = Lazy::op(d[k << 1], d[(k << 1) | 1]); }
void all_apply(int k, const F& f) {
d[k] = Lazy::mapping(f, d[k]);
if (k < size) lz[k] = Lazy::composition(f, lz[k]);
}
void push(int k) {
all_apply(k << 1, lz[k]);
all_apply((k << 1) | 1, lz[k]);
lz[k] = Lazy::id();
}
};
/**
* @brief Lazy Segment Tree ()
* @docs docs/data_structure/lazy_segment_tree.md
*/
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int N;
cin >> N;
V<ll> A(N), T(N);
rep(i, N) cin >> A[i] >> T[i];
int Q;
cin >> Q;
V<ll> D(Q);
V<int> L(Q), R(Q);
rep(i, Q) {
cin >> D[i] >> L[i] >> R[i];
L[i]--;
}
rep(i, N) {
A[i] = A[i] + T[i] - 1;
T[i]--;
}
auto calc = [](V<ll>& A, V<ll>& D, V<int>& L, V<int>& R) -> V<ll> {
int Q = (int)D.size(), N = (int)A.size();
V<tuple<ll, int, int>> event;
rep(i, N) event.push_back({A[i], 1, i});
rep(i, Q) event.push_back({D[i], 2, i});
sort(event.begin(), event.end());
V<pair<ll, int>> seginit(N);
rep(i, N) seginit[i] = {A[i], 1};
lazy_segment_tree<lazy_sum_add<ll>> seg(seginit);
V<ll> ans(Q);
ll las = 0;
for (auto [t, qt, ind] : event) {
seg.apply(0, N, -(t - las));
las = t;
if (qt == 1) {
seg.set(ind, {seg[ind].first, 0});
} else {
ans[ind] = seg.prod(L[ind], R[ind]).first;
}
}
return ans;
};
show(A, T);
auto res1 = calc(A, D, L, R);
auto res2 = calc(T, D, L, R);
show(res1, res2);
rep(i, Q) { cout << res1[i] - res2[i] << '\n'; }
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0