結果

問題 No.2102 [Cherry Alpha *] Conditional Reflection
ユーザー
提出日時 2022-10-15 00:41:19
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,017 ms / 3,000 ms
コード長 19,810 bytes
コンパイル時間 1,374 ms
コンパイル使用メモリ 132,464 KB
実行使用メモリ 19,072 KB
最終ジャッジ日時 2024-06-26 18:42:14
合計ジャッジ時間 39,470 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 461 ms
10,496 KB
testcase_03 AC 601 ms
12,672 KB
testcase_04 AC 483 ms
10,496 KB
testcase_05 AC 341 ms
7,168 KB
testcase_06 AC 522 ms
11,008 KB
testcase_07 AC 339 ms
9,600 KB
testcase_08 AC 162 ms
6,940 KB
testcase_09 AC 507 ms
11,776 KB
testcase_10 AC 221 ms
6,944 KB
testcase_11 AC 178 ms
7,168 KB
testcase_12 AC 373 ms
9,856 KB
testcase_13 AC 660 ms
13,824 KB
testcase_14 AC 393 ms
8,960 KB
testcase_15 AC 600 ms
11,392 KB
testcase_16 AC 824 ms
15,488 KB
testcase_17 AC 232 ms
7,680 KB
testcase_18 AC 461 ms
10,624 KB
testcase_19 AC 277 ms
7,808 KB
testcase_20 AC 696 ms
14,464 KB
testcase_21 AC 269 ms
6,944 KB
testcase_22 AC 930 ms
16,768 KB
testcase_23 AC 926 ms
16,768 KB
testcase_24 AC 909 ms
16,768 KB
testcase_25 AC 908 ms
16,640 KB
testcase_26 AC 910 ms
16,640 KB
testcase_27 AC 917 ms
16,640 KB
testcase_28 AC 895 ms
16,640 KB
testcase_29 AC 888 ms
16,640 KB
testcase_30 AC 920 ms
16,768 KB
testcase_31 AC 947 ms
16,768 KB
testcase_32 AC 903 ms
16,640 KB
testcase_33 AC 905 ms
16,640 KB
testcase_34 AC 900 ms
16,640 KB
testcase_35 AC 898 ms
16,512 KB
testcase_36 AC 957 ms
16,512 KB
testcase_37 AC 913 ms
16,768 KB
testcase_38 AC 939 ms
16,768 KB
testcase_39 AC 899 ms
16,768 KB
testcase_40 AC 918 ms
16,640 KB
testcase_41 AC 941 ms
16,768 KB
testcase_42 AC 626 ms
12,160 KB
testcase_43 AC 608 ms
12,160 KB
testcase_44 AC 619 ms
12,160 KB
testcase_45 AC 630 ms
12,160 KB
testcase_46 AC 630 ms
12,288 KB
testcase_47 AC 405 ms
8,576 KB
testcase_48 AC 400 ms
8,704 KB
testcase_49 AC 395 ms
8,704 KB
testcase_50 AC 395 ms
8,832 KB
testcase_51 AC 389 ms
8,704 KB
testcase_52 AC 34 ms
6,940 KB
testcase_53 AC 34 ms
6,944 KB
testcase_54 AC 33 ms
6,940 KB
testcase_55 AC 42 ms
6,940 KB
testcase_56 AC 41 ms
6,940 KB
testcase_57 AC 40 ms
6,940 KB
testcase_58 AC 34 ms
6,944 KB
testcase_59 AC 1,017 ms
19,072 KB
testcase_60 AC 146 ms
6,940 KB
testcase_61 AC 39 ms
6,940 KB
testcase_62 AC 15 ms
6,944 KB
testcase_63 AC 91 ms
6,940 KB
testcase_64 AC 88 ms
6,944 KB
testcase_65 AC 97 ms
6,940 KB
testcase_66 AC 174 ms
6,940 KB
testcase_67 AC 285 ms
6,944 KB
testcase_68 AC 207 ms
6,940 KB
testcase_69 AC 278 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cstdio>
#include <cstdint>
#include <cmath>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <algorithm>
#include <numeric>
#include <cassert>
using namespace std;
namespace atcoder{};using namespace atcoder;

using ull = uint64_t;
using ll = int64_t;
using vi = vector<int>;
using vll = vector<ll>;
using vs = vector<string>;
using ld = long double;
using P = pair<ll,ll>;
using G = vector<vector<int>>;

#ifdef MYDEBUG
template<class C> string join(const C& c){stringstream ss; for(auto it=c.begin(); it!=c.end();it++){ss << *it;if(it!=c.end())ss<<", ";}return ss.str();}
template<class C> ostream &operator<<(ostream &os, const vector<C>& c){for(auto it=c.begin(); it!=c.end();it++){os << *it;if(it!=c.end())os<<", ";}return os;}
#define LO(...) fprintf(stderr, __VA_ARGS__)
#define debug(x) cerr << "\033[33m(line:" << __LINE__ << ") " << #x << ": " << x << "\033[m" << endl
#else
#define LO(...) (void)0
#define debug(x) (void)0
#endif

#define reps(i,a,n) for(ll i##_len = (ll)(n), i = (a); i < i##_len; ++i)
#define rep(i,n) reps(i,0,n)
#define rrep(i,n) reps(i,1,n+1)
#define repd(i,n) for(ll i=n-1;i>=0;i--)
#define rrepd(i,n) for(ll i=n;i>=1;i--)

#define inp(i) ll i; cin >> i;
#define inps(s) string s; cin >> s;
#define inpp(p) cin >> (p).first >> (p).second
#define inpv(v,N) vll v(N);rep(i,N)cin>>v[i];
#define inpg(g,N,M) g.resize(N);rep(i,M){inp(a);inp(b);a--,b--;g[a].push_back(b);g[b].push_back(a);}
#define all(v) begin(v),end(v)
#define YESNO(b) cout<<(b?"YES\n":"NO\n")
#define yesno(b) cout<<(b?"yes\n":"no\n")
#define YesNo(b) cout<<(b?"Yes\n":"No\n")
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"

#define SP cout << " "
#define ENDL cout << "\n"
#define ou(i) cout << (i)
#define ous(i) cout << (i) << " "
#define oul(i) cout << (i) << "\n"
#define setfp() cout << fixed << setprecision(16)

template<typename C> void ouv(const C &v){for(auto &&e:v){cout << e;if(&e != &v.back()) cout << ' ';}cout << "\n";}
template<typename C> void ouvadd(const C &v){for(auto &&e:v){cout << e+1;if(&e != &v.back()) cout << ' ';}cout << "\n";}

template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }

inline ll lg(ll __n) { return sizeof(ll) * __CHAR_BIT__ - 1 - __builtin_clzl(__n); }

int dx[8]={1,0,-1,0,1,-1,-1,1};
int dy[8]={0,1,0,-1,1,1,-1,-1};

constexpr ll INF = 1e18;
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_MODINT_HPP
constexpr ll MOD = 998244353LL;
using mint = modint998244353;
ostream& operator<<(ostream &os, mint const &i){return os<<i.val();}

int main(){
    inp(N);
    set<int> a;
    set<string> a2;
    rep(i,N){
        inps(S);

        if(a2.count(S)){
            Yes;
            continue;
        }
        ll k = S.size();
        mint h = 0;
        rep(i,k){
            h += (i+1) * S[i];
        }
        bool ok = 0;
        rep(j,k-1){
            auto h2 = h - S[j]*(j+1);
            h2 -= S[j+1]*(j+2);
            h2 += S[j+1]*(j+1);
            h2 += S[j]*(j+2);
            if(a.count(h2.val())){
                swap(S[j], S[j+1]);
                if(a2.count(S)){
                    ok=1;
                    swap(S[j], S[j+1]);
                    break;
                }
                swap(S[j], S[j+1]);
            }
        }
        a.insert(h.val());
        a2.insert(S);

        YesNo(ok);
    }

    return 0;
}
0