結果

問題 No.5008 [Cherry Alpha] Discrete Pendulum with Air Resistance
ユーザー hitonanodehitonanode
提出日時 2022-10-15 01:07:43
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,801 ms / 2,000 ms
コード長 14,640 bytes
コンパイル時間 3,011 ms
実行使用メモリ 6,952 KB
スコア 1,417,297,036,144,685
最終ジャッジ日時 2022-10-15 01:09:24
合計ジャッジ時間 100,364 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,707 ms
5,928 KB
testcase_01 AC 1,757 ms
5,836 KB
testcase_02 AC 1,684 ms
6,172 KB
testcase_03 AC 1,718 ms
5,884 KB
testcase_04 AC 1,759 ms
6,948 KB
testcase_05 AC 1,720 ms
6,952 KB
testcase_06 AC 1,724 ms
6,952 KB
testcase_07 AC 1,764 ms
6,948 KB
testcase_08 AC 1,772 ms
5,840 KB
testcase_09 AC 1,726 ms
6,128 KB
testcase_10 AC 1,757 ms
6,020 KB
testcase_11 AC 1,713 ms
6,032 KB
testcase_12 AC 1,719 ms
5,920 KB
testcase_13 AC 1,778 ms
5,924 KB
testcase_14 AC 1,780 ms
5,968 KB
testcase_15 AC 1,731 ms
6,952 KB
testcase_16 AC 1,736 ms
6,948 KB
testcase_17 AC 1,731 ms
6,040 KB
testcase_18 AC 1,722 ms
5,984 KB
testcase_19 AC 1,735 ms
6,120 KB
testcase_20 AC 1,753 ms
5,928 KB
testcase_21 AC 1,738 ms
6,952 KB
testcase_22 AC 1,748 ms
5,852 KB
testcase_23 AC 1,715 ms
6,948 KB
testcase_24 AC 1,718 ms
5,960 KB
testcase_25 AC 1,762 ms
5,932 KB
testcase_26 AC 1,748 ms
5,840 KB
testcase_27 AC 1,723 ms
6,952 KB
testcase_28 AC 1,786 ms
5,924 KB
testcase_29 AC 1,745 ms
5,916 KB
testcase_30 AC 1,748 ms
6,952 KB
testcase_31 AC 1,738 ms
6,020 KB
testcase_32 AC 1,766 ms
5,848 KB
testcase_33 AC 1,745 ms
5,840 KB
testcase_34 AC 1,801 ms
6,952 KB
testcase_35 AC 1,740 ms
5,960 KB
testcase_36 AC 1,745 ms
6,948 KB
testcase_37 AC 1,690 ms
6,040 KB
testcase_38 AC 1,721 ms
6,072 KB
testcase_39 AC 1,670 ms
6,124 KB
testcase_40 AC 1,685 ms
6,948 KB
testcase_41 AC 1,692 ms
5,848 KB
testcase_42 AC 1,703 ms
5,920 KB
testcase_43 AC 1,709 ms
6,036 KB
testcase_44 AC 1,717 ms
5,920 KB
testcase_45 AC 1,719 ms
6,952 KB
testcase_46 AC 1,748 ms
5,964 KB
testcase_47 AC 1,733 ms
6,952 KB
testcase_48 AC 1,739 ms
6,124 KB
testcase_49 AC 1,745 ms
5,880 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }

#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) 0
#define dbgif(cond, x) 0
#endif
#ifdef BENCHMARK
#define bench(x) (cout << (x) << endl)
#define dump_onlinejudge(x) 0
#else
#define dump_onlinejudge(x) (cout << (x) << endl)
#define bench(x) 0
#endif

uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }

struct Pendulum {
    int b;  // 初期振幅
    int m;  // 最小振幅
    int e;  // 減衰振幅
    std::vector<int> init;
    Pendulum() = default;
    Pendulum(int b_, int m_, int e_) : b(b_), m(m_), e(e_) {
        assert(1 <= m and m <= b);
        assert(1 <= e);
        init.push_back(0);
        for (int dir = 1, a = b_; a > m or dir < 0; dir = -dir, a = max(m, a - e)) {
            for (int t = 1; t <= a; ++t) init.push_back(dir * t);
            for (int t = a - 1; t >= 0; --t) init.push_back(dir * t);
        }
    }
    int get(int t) const {
        assert(t >= 0);
        if (t < int(init.size())) return init.at(t);
        int md = (t - init.size() + 1) % (m * 4);
        if (md < m) return md;
        if (md < m * 3) return m * 2 - md;
        return md - m * 4;
    }
};
constexpr int maxb = 13;
vector<vector<vector<pair<vector<int>, vector<int>>>>> txs_uxs(maxb + 1);

const pair<vector<int>, vector<int>> &get_txs_uxs(const tuple<int, int, int> &bme) {
    return txs_uxs.at(std::get<0>(bme)).at(std::get<1>(bme)).at(std::get<2>(bme));
}

struct Input {
    int n;
    vector<int> T;
    vector<int> U;
    Input() = default;

    template <class OStream>
    Input(OStream &os) {
        int k;
        os >> n >> k;
        T.resize(k), U.resize(k);
        os >> T >> U;
    }

    static Input randgen() {
        int n = 50, k = 50, delta = 200;
        vector<lint> gs;
        while (gs.size() < k * 2 + 1) {
            vector<double> fs(k * 2);
            for (auto &f : fs) f = rand_double();

            gs = {0};
            REP(i, fs.size()) {
                lint gj = roundl(gs.back() + delta / fs[i]);
                if (gj < gs.back() + delta or gj > 1e9) {
                    gs.clear();
                    break;
                } else {
                    gs.push_back(gj);
                }
            }
        }
        vector<int> T, U;
        FOR(i, 1, k * 2 + 1) {
            (i % 2 ? T : U).push_back(gs.at(i));
        }
        assert(T.size() == 50);
        assert(U.size() == 50);
        if (rand_int() % 2) swap(T, U);
        Input ret;
        ret.n = 50;
        ret.T = T;
        ret.U = U;
        return ret;
    }
};

struct State {
    vector<tuple<int, int, int>> sol;
    vector<double> t_mat;
    double tsum;

    double Coeff = 1e7 / (25 * 49 * 50);

    double teval() const { return tsum * Coeff; }

    double ueval;

    inline int f(int k, int i, int j) const noexcept { return (k * 50 + i) * 50 + j; }
    inline int g(int k, int i) const noexcept { return k * 50 + i; }

    State(const vector<tuple<int, int, int>> &sol_) : sol(sol_), t_mat(50 * 50 * 50), tsum(0), 
        // uxs(50 * 50), 
        ueval(0) {
        REP(k, 50) {
            REP(i, 50) REP(j, i) {
                int xi = get_txs_uxs(sol[i]).first.at(k), bi = std::get<0>(sol[i]);
                int xj = get_txs_uxs(sol[j]).first.at(k), bj = std::get<0>(sol[j]);
                double v = double(abs(xi - xj)) / (bi + bj);
                t_mat.at(f(k, i, j)) = t_mat.at(f(k, j, i)) = v;
                tsum += v;
            }
        }
        REP(k, 50) {
            constexpr int INF = 1 << 30;
            int xlo = INF, xhi = -INF;
            REP(i, 50) {
                int x = get_txs_uxs(sol[i]).second.at(k);
                chmin(xlo, x);
                chmax(xhi, x);
            }
            ueval += roundl(1e7 / sqrt((xhi - xlo) * 0.05 + 1)) * 0.02;
        }
    }

    double eval() const { return teval() * ueval; }

    pair<double, double> calc_improve(int i, tuple<int, int, int> bme_i) const {
        double tsum_diff = 0;
        REP(k, 50) {
            REP(j, 50) {
                if (i == j) continue;
                int xi = get_txs_uxs(bme_i).first.at(k), bi = std::get<0>(bme_i);
                int xj = get_txs_uxs(sol[j]).first.at(k), bj = std::get<0>(sol[j]);
                double v = double(abs(xi - xj)) / (bi + bj);
                tsum_diff += v - t_mat.at(f(k, i, j));
            }
        }
        double uev = 0;
        REP(k, 50) {
            int xlo = get_txs_uxs(bme_i).second.at(k), xhi = xlo;
            REP(j, 50) {
                if (i == j) continue;
                int x = get_txs_uxs(sol[j]).second.at(k);
                chmin(xlo, x);
                chmax(xhi, x);
            }
            uev += roundl(1e7 / sqrt((xhi - xlo) * 0.05 + 1)) * 0.02;
        }
        return make_pair((tsum + tsum_diff) * Coeff * uev - eval(), uev);
    }

    void set(int i, tuple<int, int, int> bme_i, double new_uev) {
        sol[i] = bme_i;
        REP(k, 50) {
            REP(j, 50) {
                if (i == j) continue;
                int xi = get_txs_uxs(bme_i).first.at(k), bi = std::get<0>(bme_i);
                int xj = get_txs_uxs(sol[j]).first.at(k), bj = std::get<0>(sol[j]);
                double v = double(abs(xi - xj)) / (bi + bj);
                tsum += v - t_mat.at(f(k, i, j));
                t_mat.at(f(k, i, j)) = t_mat.at(f(k, j, i)) = v;
            }
        }
        ueval = new_uev;
    }
};


void dump(const vector<tuple<int, int, int>> &bmes) {
    for (auto [b, m, e] : bmes) {
        string s;
        s += to_string(b) + " " + to_string(m) + " " + to_string(e);
        dump_onlinejudge(s);
        bench(s);
    }
}

pair<vector<tuple<int, int, int>>, double> optimize(const Input &instance) {
    vector<tuple<int, int, int>> bmes;
    FOR(b, 1, maxb + 1) {
        txs_uxs.at(b).resize(b + 1);
        FOR(m, 1, b + 1) {

            if (m < b - 2) continue;

            txs_uxs.at(b).at(m).resize(max(2, b - m + 1));
            FOR(e, 1, max(1, b - m) + 1) {

                if (e > 3) continue;

                Pendulum pen(b, m, e);
                for (int t : instance.T) txs_uxs.at(b).at(m).at(e).first.push_back(pen.get(t));
                for (int t : instance.U) txs_uxs.at(b).at(m).at(e).second.push_back(pen.get(t));
                bmes.emplace_back(b, m, e);
            }
        }
    }
    dbg(bmes);
    vector<tuple<int, int, int>> solinit;
    REP(t, 50) solinit.emplace_back(bmes.at(rand_int() % bmes.size()));
    // REP(t, 50) solinit.emplace_back(t % 2 + 1, 1, 1);

    State state(solinit);

    vector<tuple<int, int, int>> bestsol = state.sol;
    double besteval = state.eval();

    double start_temp = 1e11, end_temp = 1e-10;
    const int max_iter = 10000;
    REP(iter, max_iter) {
        double rate = 1.0 * iter / max_iter;
        double temp = pow(start_temp, 1 - rate) * pow(end_temp, rate);

        double pre_score = state.eval();

        int i = rand_int() % 50;
        auto bme = bmes.at(rand_int() % bmes.size()); // FIXME
        auto imp = state.calc_improve(i, bme);
        double new_score = pre_score + imp.first;

        double prob = exp((new_score - pre_score) / temp);
        // double prob = exp(log(new_score / pre_score) / temp);
        // if (imp.first > 1) {
        if (prob > rand_double()) {
            state.set(i, bme, imp.second);
            dbg(make_pair(iter, imp.first));
            if (chmax(besteval, state.eval())) bestsol = state.sol;
        }
    }
    dbg(besteval);

    return {bestsol, besteval};
}

int main(int argc, char *argv[]) {
    if (argc >= 2) {
        // X = std::stoi(argv[1]);
    }

    Input instance(cin);
    auto [sol, f] = optimize(instance);
    // bench(f);
    auto [sol2, f2] = optimize(instance);
    auto [sol3, f3] = optimize(instance);
    bench(max({f, f2, f3}));
    dump(sol);
}
0