結果
問題 | No.557 点対称 |
ユーザー |
|
提出日時 | 2022-10-17 19:44:48 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 10,633 bytes |
コンパイル時間 | 2,440 ms |
コンパイル使用メモリ | 209,776 KB |
最終ジャッジ日時 | 2025-02-08 07:41:19 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 30 |
ソースコード
#include <bits/stdc++.h>#define rep(i,n) for(int i = 0; i < (n); i++)using namespace std;typedef long long ll;template<int MOD> struct Fp {long long val;constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; }constexpr int getmod() const { return MOD; }constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; }constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }constexpr Fp& operator += (const Fp& r) noexcept {val += r.val;if (val >= MOD) val -= MOD;return *this;}constexpr Fp& operator -= (const Fp& r) noexcept {val -= r.val;if (val < 0) val += MOD;return *this;}constexpr Fp& operator *= (const Fp& r) noexcept {val = val * r.val % MOD;return *this;}constexpr Fp& operator /= (const Fp& r) noexcept {long long a = r.val, b = MOD, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}val = val * u % MOD;if (val < 0) val += MOD;return *this;}constexpr bool operator == (const Fp& r) const noexcept {return this->val == r.val;}constexpr bool operator != (const Fp& r) const noexcept {return this->val != r.val;}constexpr bool operator < (const Fp& r) const noexcept {return this->val < r.val;}friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {is >> x.val;x.val %= MOD;if (x.val < 0) x.val += MOD;return is;}friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {return os << x.val;}friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept {if (n == 0) return 1;auto t = modpow(a, n / 2);t = t * t;if (n & 1) t = t * a;return t;}};namespace NTT {long long modpow(long long a, long long n, int mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}long long modinv(long long a, int mod) {long long b = mod, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}u %= mod;if (u < 0) u += mod;return u;}int calc_primitive_root(int mod) {if (mod == 2) return 1;if (mod == 167772161) return 3;if (mod == 469762049) return 3;if (mod == 754974721) return 11;if (mod == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;long long x = (mod - 1) / 2;while (x % 2 == 0) x /= 2;for (long long i = 3; i * i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) x /= i;}}if (x > 1) divs[cnt++] = x;for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (modpow(g, (mod - 1) / divs[i], mod) == 1) {ok = false;break;}}if (ok) return g;}}int get_fft_size(int N, int M) {int size_a = 1, size_b = 1;while (size_a < N) size_a <<= 1;while (size_b < M) size_b <<= 1;return max(size_a, size_b) << 1;}// number-theoretic transformtemplate<class mint> void trans(vector<mint> &v, bool inv = false) {if (v.empty()) return;int N = (int)v.size();int MOD = v[0].getmod();int PR = calc_primitive_root(MOD);static bool first = true;static vector<long long> vbw(30), vibw(30);if (first) {first = false;for (int k = 0; k < 30; ++k) {vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);vibw[k] = modinv(vbw[k], MOD);}}for (int i = 0, j = 1; j < N - 1; j++) {for (int k = N >> 1; k > (i ^= k); k >>= 1);if (i > j) swap(v[i], v[j]);}for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {long long bw = vbw[k];if (inv) bw = vibw[k];for (int i = 0; i < N; i += t) {mint w = 1;for (int j = 0; j < t/2; ++j) {int j1 = i + j, j2 = i + j + t/2;mint c1 = v[j1], c2 = v[j2] * w;v[j1] = c1 + c2;v[j2] = c1 - c2;w *= bw;}}}if (inv) {long long invN = modinv(N, MOD);for (int i = 0; i < N; ++i) v[i] = v[i] * invN;}}// for garnerstatic constexpr int MOD0 = 754974721;static constexpr int MOD1 = 167772161;static constexpr int MOD2 = 469762049;using mint0 = Fp<MOD0>;using mint1 = Fp<MOD1>;using mint2 = Fp<MOD2>;static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);static const mint2 imod01 = 187290749; // imod1 / MOD0;// small case (T = mint, long long)template<class T> vector<T> naive_mul(const vector<T> &A, const vector<T> &B) {if (A.empty() || B.empty()) return {};int N = (int)A.size(), M = (int)B.size();vector<T> res(N + M - 1);for (int i = 0; i < N; ++i)for (int j = 0; j < M; ++j)res[i + j] += A[i] * B[j];return res;}// minttemplate<class mint> vector<mint> mul(const vector<mint> &A, const vector<mint> &B) {if (A.empty() || B.empty()) return {};int N = (int)A.size(), M = (int)B.size();if (min(N, M) < 30) return naive_mul(A, B);int MOD = A[0].getmod();int size_fft = get_fft_size(N, M);if (MOD == 998244353) {vector<mint> a(size_fft), b(size_fft), c(size_fft);for (int i = 0; i < N; ++i) a[i] = A[i];for (int i = 0; i < M; ++i) b[i] = B[i];trans(a), trans(b);vector<mint> res(size_fft);for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];trans(res, true);res.resize(N + M - 1);return res;}vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);for (int i = 0; i < N; ++i)a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;for (int i = 0; i < M; ++i)b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);for (int i = 0; i < size_fft; ++i) {c0[i] = a0[i] * b0[i];c1[i] = a1[i] * b1[i];c2[i] = a2[i] * b2[i];}trans(c0, true), trans(c1, true), trans(c2, true);static const mint mod0 = MOD0, mod01 = mod0 * MOD1;vector<mint> res(N + M - 1);for (int i = 0; i < N + M - 1; ++i) {int y0 = c0[i].val;int y1 = (imod0 * (c1[i] - y0)).val;int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;res[i] = mod01 * y2 + mod0 * y1 + y0;}return res;}// long longvector<long long> mul_ll(const vector<long long> &A, const vector<long long> &B) {if (A.empty() || B.empty()) return {};int N = (int)A.size(), M = (int)B.size();if (min(N, M) < 30) return naive_mul(A, B);int size_fft = get_fft_size(N, M);vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);for (int i = 0; i < N; ++i)a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];for (int i = 0; i < M; ++i)b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);for (int i = 0; i < size_fft; ++i) {c0[i] = a0[i] * b0[i];c1[i] = a1[i] * b1[i];c2[i] = a2[i] * b2[i];}trans(c0, true), trans(c1, true), trans(c2, true);static const long long mod0 = MOD0, mod01 = mod0 * MOD1;vector<long long> res(N + M - 1);for (int i = 0; i < N + M - 1; ++i) {int y0 = c0[i].val;int y1 = (imod0 * (c1[i] - y0)).val;int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;res[i] = mod01 * y2 + mod0 * y1 + y0;}return res;}};// Binomial coefficienttemplate<class T> struct BiCoef {vector<T> fact_, inv_, finv_;constexpr BiCoef() {}constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {init(n);}constexpr void init(int n) noexcept {fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);int MOD = fact_[0].getmod();for(int i = 2; i < n; i++){fact_[i] = fact_[i-1] * i;inv_[i] = -inv_[MOD%i] * (MOD/i);finv_[i] = finv_[i-1] * inv_[i];}}constexpr T com(int n, int k) const noexcept {if (n < k || n < 0 || k < 0) return 0;return fact_[n] * finv_[k] * finv_[n-k];}constexpr T fact(int n) const noexcept {if (n < 0) return 0;return fact_[n];}constexpr T inv(int n) const noexcept {if (n < 0) return 0;return inv_[n];}constexpr T finv(int n) const noexcept {if (n < 0) return 0;return finv_[n];}};const int MOD = 1e9+7;using mint = Fp<MOD>;int main(){cin.tie(0);ios::sync_with_stdio(0);ll N; cin >> N;if(N == 1) {cout << 2 << endl;} else {cout << mint(N % 2 == 1 ? 3 : 1) * 4 * modpow(mint(5), N / 2 - 1) << "\n";}}