結果
問題 | No.1750 ラムドスウイルスの感染拡大-hard |
ユーザー | rogi52 |
提出日時 | 2022-10-17 19:52:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 211 ms / 2,000 ms |
コード長 | 15,557 bytes |
コンパイル時間 | 2,717 ms |
コンパイル使用メモリ | 224,952 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-28 09:42:48 |
合計ジャッジ時間 | 6,143 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 6 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 38 ms
6,944 KB |
testcase_09 | AC | 38 ms
6,940 KB |
testcase_10 | AC | 40 ms
6,940 KB |
testcase_11 | AC | 30 ms
6,944 KB |
testcase_12 | AC | 41 ms
6,940 KB |
testcase_13 | AC | 39 ms
6,944 KB |
testcase_14 | AC | 199 ms
6,944 KB |
testcase_15 | AC | 205 ms
6,940 KB |
testcase_16 | AC | 203 ms
6,944 KB |
testcase_17 | AC | 206 ms
6,940 KB |
testcase_18 | AC | 211 ms
6,940 KB |
testcase_19 | AC | 203 ms
6,940 KB |
testcase_20 | AC | 138 ms
6,940 KB |
testcase_21 | AC | 159 ms
6,940 KB |
testcase_22 | AC | 29 ms
6,944 KB |
testcase_23 | AC | 193 ms
6,940 KB |
testcase_24 | AC | 23 ms
6,944 KB |
testcase_25 | AC | 56 ms
6,944 KB |
testcase_26 | AC | 20 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 28 ms
6,940 KB |
testcase_31 | AC | 27 ms
6,940 KB |
testcase_32 | AC | 26 ms
6,944 KB |
testcase_33 | AC | 25 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); i++) using namespace std; typedef long long ll; template<int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; } constexpr int getmod() const { return MOD; } constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } constexpr bool operator < (const Fp& r) const noexcept { return this->val < r.val; } friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept { return os << x.val; } friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } }; namespace NTT { long long modpow(long long a, long long n, int mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, int mod) { long long b = mod, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } int calc_primitive_root(int mod) { if (mod == 2) return 1; if (mod == 167772161) return 3; if (mod == 469762049) return 3; if (mod == 754974721) return 11; if (mod == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; long long x = (mod - 1) / 2; while (x % 2 == 0) x /= 2; for (long long i = 3; i * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) x /= i; } } if (x > 1) divs[cnt++] = x; for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (modpow(g, (mod - 1) / divs[i], mod) == 1) { ok = false; break; } } if (ok) return g; } } int get_fft_size(int N, int M) { int size_a = 1, size_b = 1; while (size_a < N) size_a <<= 1; while (size_b < M) size_b <<= 1; return max(size_a, size_b) << 1; } // number-theoretic transform template<class mint> void trans(vector<mint> &v, bool inv = false) { if (v.empty()) return; int N = (int)v.size(); int MOD = v[0].getmod(); int PR = calc_primitive_root(MOD); static bool first = true; static vector<long long> vbw(30), vibw(30); if (first) { first = false; for (int k = 0; k < 30; ++k) { vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD); vibw[k] = modinv(vbw[k], MOD); } } for (int i = 0, j = 1; j < N - 1; j++) { for (int k = N >> 1; k > (i ^= k); k >>= 1); if (i > j) swap(v[i], v[j]); } for (int k = 0, t = 2; t <= N; ++k, t <<= 1) { long long bw = vbw[k]; if (inv) bw = vibw[k]; for (int i = 0; i < N; i += t) { mint w = 1; for (int j = 0; j < t/2; ++j) { int j1 = i + j, j2 = i + j + t/2; mint c1 = v[j1], c2 = v[j2] * w; v[j1] = c1 + c2; v[j2] = c1 - c2; w *= bw; } } } if (inv) { long long invN = modinv(N, MOD); for (int i = 0; i < N; ++i) v[i] = v[i] * invN; } } // for garner static constexpr int MOD0 = 754974721; static constexpr int MOD1 = 167772161; static constexpr int MOD2 = 469762049; using mint0 = Fp<MOD0>; using mint1 = Fp<MOD1>; using mint2 = Fp<MOD2>; static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1); static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2); static const mint2 imod01 = 187290749; // imod1 / MOD0; // small case (T = mint, long long) template<class T> vector<T> naive_mul (const vector<T> &A, const vector<T> &B) { if (A.empty() || B.empty()) return {}; int N = (int)A.size(), M = (int)B.size(); vector<T> res(N + M - 1); for (int i = 0; i < N; ++i) for (int j = 0; j < M; ++j) res[i + j] += A[i] * B[j]; return res; } // mint template<class mint> vector<mint> mul (const vector<mint> &A, const vector<mint> &B) { if (A.empty() || B.empty()) return {}; int N = (int)A.size(), M = (int)B.size(); if (min(N, M) < 30) return naive_mul(A, B); int MOD = A[0].getmod(); int size_fft = get_fft_size(N, M); if (MOD == 998244353) { vector<mint> a(size_fft), b(size_fft), c(size_fft); for (int i = 0; i < N; ++i) a[i] = A[i]; for (int i = 0; i < M; ++i) b[i] = B[i]; trans(a), trans(b); vector<mint> res(size_fft); for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i]; trans(res, true); res.resize(N + M - 1); return res; } vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0); vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0); vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0); for (int i = 0; i < N; ++i) a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val; for (int i = 0; i < M; ++i) b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val; trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2); for (int i = 0; i < size_fft; ++i) { c0[i] = a0[i] * b0[i]; c1[i] = a1[i] * b1[i]; c2[i] = a2[i] * b2[i]; } trans(c0, true), trans(c1, true), trans(c2, true); static const mint mod0 = MOD0, mod01 = mod0 * MOD1; vector<mint> res(N + M - 1); for (int i = 0; i < N + M - 1; ++i) { int y0 = c0[i].val; int y1 = (imod0 * (c1[i] - y0)).val; int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val; res[i] = mod01 * y2 + mod0 * y1 + y0; } return res; } // long long vector<long long> mul_ll (const vector<long long> &A, const vector<long long> &B) { if (A.empty() || B.empty()) return {}; int N = (int)A.size(), M = (int)B.size(); if (min(N, M) < 30) return naive_mul(A, B); int size_fft = get_fft_size(N, M); vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0); vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0); vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0); for (int i = 0; i < N; ++i) a0[i] = A[i], a1[i] = A[i], a2[i] = A[i]; for (int i = 0; i < M; ++i) b0[i] = B[i], b1[i] = B[i], b2[i] = B[i]; trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2); for (int i = 0; i < size_fft; ++i) { c0[i] = a0[i] * b0[i]; c1[i] = a1[i] * b1[i]; c2[i] = a2[i] * b2[i]; } trans(c0, true), trans(c1, true), trans(c2, true); static const long long mod0 = MOD0, mod01 = mod0 * MOD1; vector<long long> res(N + M - 1); for (int i = 0; i < N + M - 1; ++i) { int y0 = c0[i].val; int y1 = (imod0 * (c1[i] - y0)).val; int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val; res[i] = mod01 * y2 + mod0 * y1 + y0; } return res; } }; // Binomial coefficient template<class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].getmod(); for(int i = 2; i < n; i++){ fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); finv_[i] = finv_[i-1] * inv_[i]; } } constexpr T com(int n, int k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n-k]; } constexpr T fact(int n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(int n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(int n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; const int MOD = 998244353; using mint = Fp<MOD>; template < class T > struct vec : public vector< T > { vec() : vector< T >() {} vec(int n, T e = 0) : vector< T >(n, e) {} vec(initializer_list< T > v) : vector< T >(v) {} int size() const { return vector< T >::size(); } vec& operator+=(const vec& rhs) { assert(size() == rhs.size()); rep(i,size()) (*this)[i] += rhs[i]; return *this; } vec& operator-=(const vec& rhs) { assert(size() == rhs.size()); rep(i,size()) (*this)[i] -= rhs[i]; return *this; } vec& operator*=(T x) { rep(i,size()) (*this)[i] *= x; return *this; } vec& operator/=(T x) { x = T(1) / x; rep(i,size()) (*this)[i] *= x; return *this; } vec operator+(const vec& rhs) const { return vec(*this) += rhs; } vec operator-(const vec& rhs) const { return vec(*this) -= rhs; } vec operator*(T x) const { return vec(*this) *= x; } vec operator/(T x) const { return vec(*this) /= x; } bool operator==(const vec& rhs) const { rep(i,size()) if((*this)[i] != rhs[i]) return false; return true; } }; template < class T > T dot(const vec< T >& a, const vec< T >& b) { assert(a.size() == b.size()); T res(0); rep(i,a.size()) res += a[i] * b[i]; return res; } template < class T > struct mat : public vec< vec< T > > { mat(int h, int w, T e = 0) : vec< vec< T > >(h, vec< T >(w, e)) {} mat(initializer_list< initializer_list< T > > m) : vec< vec< T > >(m.size()) { auto it = m.begin(); for(int i = 0; it != m.end(); i++, it++) (*this)[i] = vec< T >(*it); } int size() const { return vec< vec< T > >::size(); } mat operator*(const mat &rhs) const { int N = (*this).size(), M = (*this)[0].size(), K = rhs[0].size(); assert((*this)[0].size() == rhs.size()); mat res(N, K); rep(k,M)rep(i,N)rep(j,K) res[i][j] += (*this)[i][k] * rhs[k][j]; return res; } mat& operator*=(const mat &rhs) { return *this = (*this) * rhs; } vec< T > operator*(const vec< T >& rhs) const { assert((*this)[0].size() == rhs.size()); vec< T > res(size()); rep(i,size()) res[i] = dot((*this)[i], rhs); return res; } vec< T >& operator[](int i) { return vec< vec< T > >::operator[](i); } const vec< T >& operator[](int i) const { return vec< vec< T > >::operator[](i); } mat& operator/=(T x) { rep(i,size()) (*this)[i] /= x; return *this; } mat operator/(T x) const { return (*this) /= x; } bool operator==(const mat& rhs) const { rep(i,size()) if((*this)[i] != rhs[i]) return false; return true; } }; template < class T > struct msq : public mat< T > { msq(int n, T e = 0) : mat< T >(n, n, e) {} msq(initializer_list< initializer_list< T > > m) : mat< T >(m) {} msq unit() const { msq I((*this).size()); rep(i,(*this).size()) I[i][i] = T(1); return I; } msq pow(ll n) const { msq res = unit(), A = (*this); while(n > 0) { if(n & 1) res *= A; A *= A; n >>= 1; } return res; } T det() const { msq A = *this; T res = 1; rep(i,A.size()) { if(A[i][i] == T(0)) { for(int j = i + 1; j < A.size(); j++) if(A[j][i] != T(0)) { for(int k = i; k < A.size(); k++) swap(A[i][k], A[j][k]); res *= T(-1); break; } } if(A[i][i] == T(0)) return T(0); res *= A[i][i]; const T x = T(1) / A[i][i]; for(int k = i; k < A.size(); k++) A[i][k] *= x; for(int j = i + 1; j < A.size(); j++) { const T x = A[j][i]; for(int k = i; k < A.size(); k++) A[j][k] -= A[i][k] * x; } } return res; } msq inv() const { msq A = *this, B = unit(); rep(i,A.size()) { if(A[i][i] == T(0)) { for(int j = i + 1; j < A.size(); j++) if(A[j][i] != T(0)) { for(int k = i; k < A.size(); k++) swap(A[i][k], A[j][k]); for(int k = 0; k < A.size(); k++) swap(B[i][k], B[j][k]); break; } } if(A[i][i] == T(0)) throw "this matrix is not regular."; const T x = T(1) / A[i][i]; for(int k = i; k < A.size(); k++) A[i][k] *= x; for(int k = 0; k < A.size(); k++) B[i][k] *= x; for(int j = 0; j < A.size(); j++) if(i != j) { const T x = A[j][i]; for(int k = i; k < A.size(); k++) A[j][k] -= A[i][k] * x; for(int k = 0; k < A.size(); k++) B[j][k] -= B[i][k] * x; } } return B; } }; int main(){ cin.tie(0); ios::sync_with_stdio(0); ll N,M,T; cin >> N >> M >> T; msq<mint> A(N, 0); rep(_,M) { int s,t; cin >> s >> t; A[s][t] = A[t][s] = 1; } mat<mint> x(1, N, 0); x[0][0] = 1; cout << (x * A.pow(T))[0][0] << endl; }