結果

問題 No.470 Inverse S+T Problem
ユーザー heno239heno239
提出日時 2022-10-19 04:41:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 7,699 bytes
コンパイル時間 2,729 ms
コンパイル使用メモリ 181,052 KB
実行使用メモリ 22,988 KB
最終ジャッジ日時 2024-06-29 09:46:51
合計ジャッジ時間 4,377 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 12 ms
19,968 KB
testcase_01 AC 12 ms
19,840 KB
testcase_02 AC 11 ms
19,968 KB
testcase_03 AC 11 ms
19,968 KB
testcase_04 AC 11 ms
20,040 KB
testcase_05 AC 11 ms
19,912 KB
testcase_06 AC 15 ms
22,756 KB
testcase_07 AC 17 ms
22,988 KB
testcase_08 AC 16 ms
22,912 KB
testcase_09 AC 12 ms
19,968 KB
testcase_10 AC 12 ms
19,968 KB
testcase_11 AC 12 ms
19,968 KB
testcase_12 AC 11 ms
19,968 KB
testcase_13 AC 11 ms
19,968 KB
testcase_14 AC 11 ms
19,968 KB
testcase_15 AC 11 ms
19,968 KB
testcase_16 AC 11 ms
19,840 KB
testcase_17 AC 10 ms
20,040 KB
testcase_18 AC 11 ms
19,916 KB
testcase_19 AC 11 ms
19,916 KB
testcase_20 AC 11 ms
19,968 KB
testcase_21 AC 11 ms
20,040 KB
testcase_22 AC 11 ms
19,840 KB
testcase_23 AC 11 ms
19,968 KB
testcase_24 AC 11 ms
19,912 KB
testcase_25 AC 11 ms
19,968 KB
testcase_26 AC 11 ms
19,840 KB
testcase_27 AC 12 ms
19,968 KB
testcase_28 AC 12 ms
20,164 KB
testcase_29 AC 11 ms
19,916 KB
testcase_30 AC 12 ms
20,072 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//constexpr ll mod = 998244353;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

template<typename T>
void chmin(T& a, T b) {
	a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
	a = max(a, b);
}
template<typename T>
void cinarray(vector<T>& v) {
	rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
	rep(i, v.size()) {
		if (i > 0)cout << " "; cout << v[i];
	}
	cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	//if (x == 0)return 0;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
//mod should be <2^31
struct modint {
	int n;
	modint() :n(0) { ; }
	modint(ll m) {
		if (m < 0 || mod <= m) {
			m %= mod; if (m < 0)m += mod;
		}
		n = m;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 21;
modint fact[max_n], factinv[max_n];
void init_f() {
	fact[0] = modint(1);
	for (int i = 0; i < max_n - 1; i++) {
		fact[i + 1] = fact[i] * modint(i + 1);
	}
	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
	for (int i = max_n - 2; i >= 0; i--) {
		factinv[i] = factinv[i + 1] * modint(i + 1);
	}
}
modint comb(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
	a = abs(a); b = abs(b);
	if (a < b)swap(a, b);
	while (b) {
		ll r = a % b; a = b; b = r;
	}
	return a;
}
using ld = long double;
//typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);
template<typename T>
void addv(vector<T>& v, int loc, T val) {
	if (loc >= v.size())v.resize(loc + 1, 0);
	v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
	fill(isp + 2, isp + mn, true);
	for (int i = 2; i < mn; i++) {
		if (!isp[i])continue;
		ps.push_back(i);
		for (int j = 2 * i; j < mn; j += i) {
			isp[j] = false;
		}
	}
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	if (res == st.begin())return st.end();
	res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
	return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
	a = a + b; return a;
}
mP operator-(mP a, mP b) {
	return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
	a = a - b; return a;
}
LP operator+(LP a, LP b) {
	return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
	a = a + b; return a;
}
LP operator-(LP a, LP b) {
	return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
	a = a - b; return a;
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
int dx[4] = { 1,0,-1,0 };
int dy[4] = { 0,1,0,-1 };
//-----------------------------------------


struct graph {
private:
	int n;
	vector<vector<int>> G, rG;
	vector<bool> used;
	vector<int> vs;

	int mk;
	vector<vector<int>> fG;
	vector<vector<int>> ori;
	vector<int> trans;
public:
	graph(int sz) {
		n = sz;
		G.resize(n);
		rG.resize(n);
		used.resize(n);

		fG.resize(n);
		trans.resize(n, -1);
		ori.resize(n);
	}
	void add_edge(int a, int b) {
		G[a].push_back(b);
		rG[b].push_back(a);
	}
	void dfs(int v) {
		used[v] = true;
		rep(i, G[v].size()) {
			if (!used[G[v][i]])dfs(G[v][i]);
		}
		vs.push_back(v);
	}
	void rdfs(int v, int k) {
		used[v] = true;
		queue<int> q; q.push(v);
		vector<int> c;
		while (!q.empty()) {
			int id = q.front(); q.pop();
			ori[k].push_back(id);
			rep(j, rG[id].size()) {
				int to = rG[id][j];
				if (used[to]) {
					if (trans[to] >= 0)c.push_back(trans[to]);
					continue;
				}
				used[to] = true; q.push(to);
			}
		}
		sort(c.begin(), c.end());
		int len = unique(c.begin(), c.end()) - c.begin();
		rep(i, len) {
			fG[c[i]].push_back(k);
		}
		rep(i, ori[k].size()) {
			trans[ori[k][i]] = k;
		}
	}
	void scc() {
		fill(used.begin(), used.end(), false);
		rep(i, n) {
			if (!used[i])dfs(i);
		}
		fill(used.begin(), used.end(), false);
		int k = 0;
		per(i, (int)vs.size()) {
			if (!used[vs[i]]) {
				rdfs(vs[i], k); k++;
			}
		}
		mk = k;
	}
	vector<int> two_sat(int n) {
		rep(i, n) {
			if (trans[i] == trans[i + n])return {};
		}
		vector<int> res(n);
		vector<bool> used(n);
		vector<bool> isok(mk);
		per(i, mk) {
			isok[i] = true;
			for (int to : fG[i])if (!isok[to])isok[i] = false;
			for (int id : ori[i]) {
				if (used[id % n])isok[i] = false;
			}
			if (isok[i]) {
				for (int id : ori[i]) {
					used[id % n] = true;
					res[id % n] = id / n;
				}
			}
		}
		return res;
	}
};
void solve(){
	int n; cin >> n;
	vector<string> s(n);
	rep(i, n)cin >> s[i];
	if (n > 52) {
		cout << "Impossible\n"; return;
	}
	graph g(2 * n);
	rep(i, n)Rep(j, i + 1, n) {
		rep(k, 2)rep(l, 2) {
			string s1, s2, t1, t2;
			s1 = s[i].substr(0, k + 1);
			s2 = s[i].substr(k + 1, 3 - (k + 1));
			t1 = s[j].substr(0, l + 1);
			t2 = s[j].substr(l + 1, 3 - (l + 1));
			if (s1 == t1 || s1 == t2 || s2 == t1 || s2 == t2) {
				g.add_edge(i + k * n, j + (l ^ 1) * n);
				g.add_edge(j + l * n, i + (k ^ 1) * n);
			}
		}
	}
	g.scc();
	vector<int> res = g.two_sat(n);
	if (res.empty()) {
		cout << "Impossible\n"; return;
	}
	rep(i, n) {
		int k = res[i];
		string s1 = s[i].substr(0, k + 1);
		string s2 = s[i].substr(k + 1, 3 - (k + 1));
		cout << s1 << " " << s2 << "\n";
	}
}





signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed << setprecision(10);
	//init_f();
	//init();
	//expr();
	//while(true)
	//int t; cin >> t; rep(i, t)
	solve();
	return 0;
}

0