結果
| 問題 |
No.1516 simple 門松列 problem Re:MASTER
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2022-10-20 17:43:30 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 45,624 bytes |
| コンパイル時間 | 259 ms |
| コンパイル使用メモリ | 87,356 KB |
| 実行使用メモリ | 80,776 KB |
| 最終ジャッジ日時 | 2024-06-30 09:52:32 |
| 合計ジャッジ時間 | 27,469 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 18 TLE * 1 |
ソースコード
import sys
readline=sys.stdin.readline
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
def Primitive_Root(p):
if p==2:
return 1
if p==167772161:
return 3
if p==469762049:
return 3
if p==754974721:
return 11
if p==998244353:
return 3
if p==10**9+7:
return 5
divisors=[2]
pp=(p-1)//2
while pp%2==0:
pp//=2
for d in range(3,pp+1,2):
if d**2>pp:
break
if pp%d==0:
divisors.append(d)
while pp%d==0:
pp//=d
if pp>1:
divisors.append(pp)
primitive_root=2
while True:
for d in divisors:
if pow(primitive_root,(p-1)//d,p)==1:
break
else:
return primitive_root
primitive_root+=1
class Polynomial:
def __init__(self,polynomial,max_degree=-1,eps=0,mod=0):
self.max_degree=max_degree
if self.max_degree!=-1 and len(polynomial)>self.max_degree+1:
self.polynomial=polynomial[:self.max_degree+1]
else:
self.polynomial=polynomial
self.mod=mod
self.eps=eps
def __eq__(self,other):
if type(other)!=Polynomial:
return False
if len(self.polynomial)!=len(other.polynomial):
return False
for i in range(len(self.polynomial)):
if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
return False
return True
def __ne__(self,other):
if type(other)!=Polynomial:
return True
if len(self.polynomial)!=len(other.polynomial):
return True
for i in range(len(self.polynomial)):
if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
return True
return False
def __add__(self,other):
if type(other)==Polynomial:
summ=[0]*max(len(self.polynomial),len(other.polynomial))
for i in range(len(self.polynomial)):
summ[i]+=self.polynomial[i]
for i in range(len(other.polynomial)):
summ[i]+=other.polynomial[i]
if self.mod:
for i in range(len(summ)):
summ[i]%=self.mod
else:
summ=[x for x in self.polynomial] if self.polynomial else [0]
summ[0]+=other
if self.mod:
summ[0]%=self.mod
while summ and abs(summ[-1])<=self.eps:
summ.pop()
summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return summ
def __sub__(self,other):
if type(other)==Polynomial:
diff=[0]*max(len(self.polynomial),len(other.polynomial))
for i in range(len(self.polynomial)):
diff[i]+=self.polynomial[i]
for i in range(len(other.polynomial)):
diff[i]-=other.polynomial[i]
if self.mod:
for i in range(len(diff)):
diff[i]%=self.mod
else:
diff=[x for x in self.polynomial] if self.polynomial else [0]
diff[0]-=other
if self.mod:
diff[0]%=self.mod
while diff and abs(diff[-1])<=self.eps:
diff.pop()
diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return diff
def __mul__(self,other):
if type(other)==Polynomial:
if self.max_degree==-1:
prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)
for i in range(len(self.polynomial)):
for j in range(len(other.polynomial)):
prod[i+j]+=self.polynomial[i]*other.polynomial[j]
else:
prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)
for i in range(len(self.polynomial)):
for j in range(min(len(other.polynomial),self.max_degree+1-i)):
prod[i+j]+=self.polynomial[i]*other.polynomial[j]
if self.mod:
for i in range(len(prod)):
prod[i]%=self.mod
else:
if self.mod:
prod=[x*other%self.mod for x in self.polynomial]
else:
prod=[x*other for x in self.polynomial]
while prod and abs(prod[-1])<=self.eps:
prod.pop()
prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return prod
def __matmul__(self,other):
assert type(other)==Polynomial
if self.mod:
prod=NTT(self.polynomial,other.polynomial)
else:
prod=FFT(self.polynomial,other.polynomial)
if self.max_degree!=-1 and len(prod)>self.max_degree+1:
prod=prod[:self.max_degree+1]
while prod and abs(prod[-1])<=self.eps:
prod.pop()
prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return prod
def __truediv__(self,other):
if type(other)==Polynomial:
assert other.polynomial
for n in range(len(other.polynomial)):
if self.eps<abs(other.polynomial[n]):
break
assert len(self.polynomial)>n
for i in range(n):
assert abs(self.polynomial[i])<=self.eps
self_polynomial=self.polynomial[n:]
other_polynomial=other.polynomial[n:]
if self.mod:
inve=MOD(self.mod).Pow(other_polynomial[0],-1)
else:
inve=1/other_polynomial[0]
quot=[]
for i in range(len(self_polynomial)-len(other_polynomial)+1):
if self.mod:
quot.append(self_polynomial[i]*inve%self.mod)
else:
quot.append(self_polynomial[i]*inve)
for j in range(len(other_polynomial)):
self_polynomial[i+j]-=other_polynomial[j]*quot[-1]
if self.mod:
self_polynomial[i+j]%=self.mod
for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)):
if self.eps<abs(self_polynomial[i]):
assert self.max_degree!=-1
self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial))
while len(quot)<=self.max_degree:
self_polynomial.append(0)
if self.mod:
quot.append(self_polynomial[0]*inve%self.mod)
self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]
else:
quot.append(self_polynomial[0]*inve)
self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]
break
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
assert self.eps<abs(other)
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot
def __rtruediv__(self,other):
assert self.polynomial and self.eps<self.polynomial[0]
assert self.max_degree!=-1
if self.mod:
quot=[MOD(self.mod).Pow(self.polynomial[0],-1)]
if self.mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(self.mod)
prim_root_inve=MOD(self.mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
polynomial=polynomial+[0]*((1<<n)-len(polynomial))
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
return polynomial
else:
quot=[1/self.polynomial[0]]
def DFT(polynomial,n,inverse=False):
N=len(polynomial)
if inverse:
primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
else:
primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
polynomial=polynomial+[0]*((1<<n)-N)
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
for i in range(1<<n):
polynomial[i]=round((polynomial[i]/(1<<n)).real)
else:
for bit in range(n,0,-1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])
return polynomial
for n in range(self.max_degree.bit_length()):
prev=quot
if self.mod:
polynomial=[x*y*y%self.mod for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
else:
polynomial=[x*y*y for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
for i in range(1<<n):
quot[i]=2*prev[i]-quot[i]
if self.mod:
quot[i]%=self.mod
for i in range(1<<n,1<<n+1):
quot[i]=-quot[i]
if self.mod:
quot[i]%=self.mod
quot=quot[:self.max_degree+1]
for i in range(len(quot)):
quot[i]*=other
if self.mod:
quot[i]%=self.mod
return quot
def __floordiv__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot
def __mod__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
while rema and abs(rema[-1])<=self.eps:
rema.pop()
rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return rema
def __divmod__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
while rema and abs(rema[-1])<=self.eps:
rema.pop()
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot,rema
def __neg__(self):
if self.mod:
nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return nega
def __pos__(self):
posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return posi
def __bool__(self):
return self.polynomial
def __getitem__(self,n):
if type(n)==int:
if n<=len(self.polynomial)-1:
return self.polynomial[n]
else:
return 0
else:
return Polynomial(polynomial=self.polynomial[n],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
def __setitem__(self,n,a):
if self.mod:
a%=self.mod
if self.max_degree==-1 or n<=self.max_degree:
if n<=len(self.polynomial)-1:
self.polynomial[n]=a
elif self.eps<abs(a):
self.polynomial+=[0]*(n-len(self.polynomial))+[a]
def __iter__(self):
for x in self.polynomial:
yield x
def __call__(self,x):
retu=0
pow_x=1
for i in range(len(self.polynomial)):
retu+=pow_x*self.polynomial[i]
pow_x*=x
if self.mod:
retu%=self.mod
pow_x%=self.mod
return retu
def __str__(self):
return "["+", ".join(map(str,self.polynomial))+"]"
def Degree(self):
return len(self.polynomial)-1
def NTT(polynomial0,polynomial1):
if mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(mod)
prim_root_inve=MOD(mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
l=len(polynomial0)+len(polynomial1)-1
n=(len(polynomial0)+len(polynomial1)-2).bit_length()
polynomial0=polynomial0+[0]*((1<<n)-len(polynomial0))
polynomial1=polynomial1+[0]*((1<<n)-len(polynomial1))
DFT(polynomial0,n)
DFT(polynomial1,n)
ntt=[x*y%mod for x,y in zip(polynomial0,polynomial1)]
DFT(ntt,n,inverse=True)
ntt=ntt[:l]
return ntt
def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
if type(poly_nume)==Polynomial:
poly_nume=poly_nume.polynomial
if type(poly_deno)==Polynomial:
poly_deno=poly_deno.polynomial
if ntt:
convolve=NTT
elif fft:
convolve=FFT
else:
def convolve(poly_nume,poly_deno):
conv=[0]*(len(poly_nume)+len(poly_deno)-1)
for i in range(len(poly_nume)):
for j in range(len(poly_deno)):
conv[i+j]+=poly_nume[i]*poly_deno[j]
if mod:
for i in range(len(conv)):
conv[i]%=mod
return conv
while N:
poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
if N%2:
poly_nume=convolve(poly_nume,poly_deno_)[1::2]
else:
poly_nume=convolve(poly_nume,poly_deno_)[::2]
poly_deno=convolve(poly_deno,poly_deno_)[::2]
if fft and mod:
for i in range(len(poly_nume)):
poly_nume[i]%=mod
for i in range(len(poly_deno)):
poly_deno[i]%=mod
N//=2
return poly_nume[0]
class Matrix:
def __init__(self,H=0,W=0,matrix=False,eps=0,mod=0,identity=0):
if identity:
if H:
self.H=H
self.W=H
else:
self.H=W
self.W=W
self.matrix=[[0]*self.W for i in range(self.H)]
for i in range(self.H):
self.matrix[i][i]=identity
elif matrix:
self.matrix=matrix
self.H=len(self.matrix)
self.W=len(self.matrix[0]) if self.matrix else 0
else:
self.H=H
self.W=W
self.matrix=[[0]*self.W for i in range(self.H)]
self.mod=mod
self.eps=eps
def __eq__(self,other):
if type(other)!=Matrix:
return False
if self.H!=other.H:
return False
if self.mod:
for i in range(self.H):
for j in range(self.W):
if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod:
return False
else:
for i in range(self.H):
for j in range(self.W):
if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]):
return False
return True
def __ne__(self,other):
if type(other)!=Matrix:
return True
if self.H!=other.H:
return True
if self.mod:
for i in range(self.H):
for j in range(self.W):
if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod:
return True
else:
for i in range(self.H):
for j in range(self.W):
if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]):
return True
return False
def __add__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
summ=Matrix(matrix=[[(self.matrix[i][j]+other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
summ=Matrix(matrix=[[self.matrix[i][j]+other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
summ=Matrix(matrix=[[(self.matrix[i][j]+other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
summ=Matrix(matrix=[[self.matrix[i][j]+other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return summ
def __sub__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
diff=Matrix(matrix=[[(self.matrix[i][j]-other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
diff=Matrix(matrix=[[self.matrix[i][j]-other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
diff=Matrix(matrix=[[(self.matrix[i][j]-other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
diff=Matrix(matrix=[[self.matrix[i][j]-other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return diff
def __mul__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
prod=Matrix(matrix=[[(self.matrix[i][j]*other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(matrix=[[self.matrix[i][j]*other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
prod=Matrix(matrix=[[(self.matrix[i][j]*other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(matrix=[[self.matrix[i][j]*other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return prod
def __matmul__(self,other):
if type(other)==Matrix:
assert self.W==other.H
prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod)
for i in range(self.H):
for j in range(other.W):
for k in range(self.W):
prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j]
if self.mod:
prod.matrix[i][j]%=self.mod
elif type(other)==int:
assert self.H==self.W
if other==0:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
elif other==1:
prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
doub=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
while other>=2:
if other&1:
prod@=doub
doub@=doub
other>>=1
prod@=doub
return prod
def __truediv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
quot=Matrix(matrix=[[(self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1))%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]/other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
quot=Matrix(matrix=[[(self.matrix[i][j]*inve)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]/other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return quot
def __floordiv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
quot=Matrix(matrix=[[self.matrix[i][j]//other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]//other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return quot
def __mod__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
rema=Matrix(matrix=[[self.matrix[i][j]%other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
rema=Matrix(matrix=[[self.matrix[i][j]%other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return rema
def __pow__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j],self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other,self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return powe
def __lshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
lshi=Matrix(matrix=[[self.matrix[i][j]<<other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
lshi=Matrix(matrix=[[self.matrix[i][j]<<other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return lshi
def __rshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
rshi=Matrix(matrix=[[self.matrix[i][j]>>other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
rshi=Matrix(matrix=[[self.matrix[i][j]>>other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return rshi
def __and__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
conj=Matrix(matrix=[[self.matrix[i][j]&other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
conj=Matrix(matrix=[[self.matrix[i][j]&other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return conj
def __or__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
disj=Matrix(matrix=[[self.matrix[i][j]|other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
disj=Matrix(matrix=[[self.matrix[i][j]|other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return disj
def __xor__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
excl=Matrix(matrix=[[self.matrix[i][j]^other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
excl=Matrix(matrix=[[self.matrix[i][j]^other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return excl
def __iadd__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]+=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]+=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __isub__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]-=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]-=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __imul__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]*=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]*=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __imatmul__(self,other):
if type(other)==Matrix:
assert self.W==other.H
prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod)
for i in range(self.H):
for j in range(other.W):
for k in range(self.W):
prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j]
if self.mod:
prod.matrix[i][j]%=self.mod
elif type(other)==int:
assert self.H==self.W
if other==0:
return Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
elif other==1:
prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
doub=self
while other>=2:
if other&1:
prod@=doub
doub@=doub
other>>=1
prod@=doub
return prod
def __itruediv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1)%self.mod
else:
self.matrix[i][j]/=other.matrix[i][j]
else:
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=self.matrix[i][j]*inve%self.mod
else:
self.matrix[i][j]/=other
return self
def __ifloordiv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]//=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]//=other
return self
def __imod__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]%=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]%=other
return self
def __ipow__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j],self.mod)
else:
self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j])
else:
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=pow(self.matrix[i][j],other,self.mod)
else:
self.matrix[i][j]=pow(self.matrix[i][j],other)
return self
def __ilshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]<<=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]<<=other
return self
def __irshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]>>=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]>>=other
return self
def __iand__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]&=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]&=other
return self
def __ior__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]|=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]|=other
return self
def __ixor__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]^=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]^=other
return self
def __neg__(self):
if self.mod:
nega=Matrix(matrix=[[(-self.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
nega=Matrix(matrix=[[-self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return nega
def __pos__(self):
posi=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return posi
def __invert__(self):
inve=Matrix(matrix=[[~self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return inve
def __abs__(self):
abso=Matrix(matrix=[[abs(self.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return abso
def __getitem__(self,i):
if type(i)==int:
return self.matrix[i]
elif type(i)==tuple:
i,j=i
if type(i)==int:
i=slice(i,i+1)
if type(j)==int:
j=slice(j,j+1)
return Matrix(matrix=[lst[j] for lst in self.matrix[i]],eps=self.eps,mod=self.mod)
def __contains__(self,x):
for i in range(self.H):
if x in self.matrix[i]:
return True
return False
def __str__(self):
digit=[max(len(str(self.matrix[i][j])) for i in range(self.H)) for j in range(self.W)]
return "\n".join([(" [" if i else "[[")+", ".join([str(self.matrix[i][j]).rjust(digit[j]," ") for j in range(self.W)])+"]" for i in range(self.H)])+"]"
def __bool__(self):
return True
def Transpose(self):
return Matrix(matrix=[[self.matrix[i][j] for i in range(self.H)] for j in range(self.W)])
def Trace(self):
assert self.H==self.W
trace=sum(self.matrix[i][i] for i in range(self.H))
if self.mod:
trace%=self.mod
return trace
def Elem_Raw_Operate_1(self,i0,i1):
self.matrix[i0],self.matrix[i1]=self.matrix[i1],self.matrix[i0]
def Elem_Raw_Operate_2(self,i,c):
if self.mod:
self.matrix[i]=[self.matrix[i][j]*c%self.mod for j in range(self.W)]
else:
self.matrix[i]=[self.matrix[i][j]*c for j in range(self.W)]
def Elem_Raw_Operate_3(self,i0,i1,c):
if self.mod:
self.matrix[i0]=[(self.matrix[i0][j]+c*self.matrix[i1][j])%self.mod for j in range(self.W)]
else:
self.matrix[i0]=[self.matrix[i0][j]+c*self.matrix[i1][j] for j in range(self.W)]
def Elimination(self,determinant=False,inverse_matrix=False,linear_equation=False,rank=False,upper_triangular=False):
h=0
ut=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
if determinant or inverse_matrix:
assert self.H==self.W
det=1
if inverse_matrix:
assert self.H==self.W
im=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
if linear_equation:
assert self.H==linear_equation.H
le=Matrix(matrix=[[linear_equation.matrix[i][j] for j in range(linear_equation.W)] for i in range(linear_equation.H)],eps=self.eps,mod=self.mod)
for j in range(ut.W):
for i in range(h,ut.H):
if abs(ut.matrix[i][j])>ut.eps:
if determinant or inverse_matrix:
det*=ut.matrix[i][j]
if self.mod:
det%=self.mod
if self.mod:
inve=MOD(self.mod).Pow(ut.matrix[i][j],-1)
else:
inve=1/ut.matrix[i][j]
ut.Elem_Raw_Operate_1(i,h)
if determinant and i!=h and self.mod:
det=(-det)%self.mod
if inverse_matrix:
im.Elem_Raw_Operate_1(i,h)
if linear_equation:
le.Elem_Raw_Operate_1(i,h)
ut.Elem_Raw_Operate_2(h,inve)
if inverse_matrix:
im.Elem_Raw_Operate_2(h,inve)
if linear_equation:
le.Elem_Raw_Operate_2(h,inve)
for ii in range(ut.H):
if ii==h:
continue
x=-ut.matrix[ii][j]
ut.Elem_Raw_Operate_3(ii,h,x)
if inverse_matrix:
im.Elem_Raw_Operate_3(ii,h,x)
if linear_equation:
le.Elem_Raw_Operate_3(ii,h,x)
h+=1
break
else:
det=0
if any(le[i][0] for i in range(h,self.H)):
le=None
tpl=()
if determinant:
tpl+=(det,)
if inverse_matrix:
if det==0:
im=None
tpl+=(im,)
if linear_equation:
tpl+=(le,)
if rank:
tpl+=(h,)
if upper_triangular:
tpl+=(ut,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
mod=998244353
N,K=map(int,readline().split())
M=Matrix(2*K**2,2*K**2,mod=mod)
for i in range(K):
for j in range(K):
for k in range(K):
if len({i,j,k})==3 and j in (min(i,j,k),max(i,j,k)):
M[i*K+j][j*K+k]+=1
M[K**2+i*K+j][K**2+j*K+k]+=1
M[i*K+j][K**2+j*K+k]+=k
A=Matrix(1,2*K**2,mod=mod)
for i in range(K**2):
A[0][i]=1
A[0][i+K**2]+=i//K+i%K
A@=M@(N-2)
print(sum(A[0][:K**2])%mod,sum(A[0][K**2:])%mod)
vwxyz