結果
問題 | No.590 Replacement |
ユーザー | maspy |
提出日時 | 2022-10-21 19:57:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 404 ms / 2,000 ms |
コード長 | 38,504 bytes |
コンパイル時間 | 5,023 ms |
コンパイル使用メモリ | 287,896 KB |
実行使用メモリ | 26,568 KB |
最終ジャッジ日時 | 2024-07-01 05:13:17 |
合計ジャッジ時間 | 16,212 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 17 ms
6,944 KB |
testcase_08 | AC | 9 ms
6,944 KB |
testcase_09 | AC | 18 ms
6,940 KB |
testcase_10 | AC | 11 ms
6,944 KB |
testcase_11 | AC | 5 ms
6,944 KB |
testcase_12 | AC | 19 ms
6,944 KB |
testcase_13 | AC | 118 ms
6,940 KB |
testcase_14 | AC | 168 ms
6,940 KB |
testcase_15 | AC | 8 ms
6,940 KB |
testcase_16 | AC | 35 ms
6,944 KB |
testcase_17 | AC | 64 ms
6,940 KB |
testcase_18 | AC | 306 ms
6,944 KB |
testcase_19 | AC | 272 ms
6,944 KB |
testcase_20 | AC | 59 ms
6,940 KB |
testcase_21 | AC | 340 ms
8,148 KB |
testcase_22 | AC | 362 ms
7,848 KB |
testcase_23 | AC | 361 ms
7,512 KB |
testcase_24 | AC | 385 ms
7,688 KB |
testcase_25 | AC | 370 ms
7,632 KB |
testcase_26 | AC | 360 ms
7,684 KB |
testcase_27 | AC | 356 ms
7,416 KB |
testcase_28 | AC | 358 ms
7,672 KB |
testcase_29 | AC | 346 ms
7,568 KB |
testcase_30 | AC | 358 ms
7,568 KB |
testcase_31 | AC | 362 ms
7,584 KB |
testcase_32 | AC | 382 ms
8,196 KB |
testcase_33 | AC | 2 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 289 ms
8,388 KB |
testcase_37 | AC | 292 ms
8,200 KB |
testcase_38 | AC | 168 ms
8,200 KB |
testcase_39 | AC | 169 ms
8,200 KB |
testcase_40 | AC | 257 ms
12,556 KB |
testcase_41 | AC | 272 ms
12,424 KB |
testcase_42 | AC | 254 ms
8,184 KB |
testcase_43 | AC | 404 ms
7,460 KB |
testcase_44 | AC | 104 ms
26,568 KB |
testcase_45 | AC | 289 ms
8,328 KB |
testcase_46 | AC | 289 ms
8,200 KB |
コンパイルメッセージ
main.cpp: In lambda function: main.cpp:21:22: warning: narrowing conversion of 'r' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 21 | using vvc = vector<vc<T>>; | ^ main.cpp:21:22: warning: narrowing conversion of 'r' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] main.cpp: In function 'void solve()': main.cpp:71:19: warning: narrowing conversion of 't1' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 71 | template <typename T, typename U> | ^~ main.cpp:71:19: warning: narrowing conversion of 't1' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] main.cpp:71:23: warning: narrowing conversion of 't2' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 71 | template <typename T, typename U> | ^~ main.cpp:71:23: warning: narrowing conversion of 't2' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] main.cpp:71:29: warning: narrowing conversion of 'n1' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 71 | template <typename T, typename U> | ^~ main.cpp:71:29: warning: narrowing conversion of 'n1' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] main.cpp:71:33: warning: narrowing conversion of 'n2' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 71 | template <typename T, typename U> | ^ main.cpp:71:33: warning: narrowing conversion of 'n2' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/590" #line 1 "library/my_template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<ll, ll>; using vi = vector<ll>; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T pick(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T pick(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T pick(pqg<T> &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template <typename T> T pick(vc<T> &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename F> ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template <typename CNT, typename T> vc<CNT> bincount(const vc<T> &A, int size) { vc<CNT> C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { int n = len(I); vc<T> B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace detail { template <typename T, decltype(&T::is_modint) = &T::is_modint> std::true_type check_value(int); template <typename T> std::false_type check_value(long); } // namespace detail template <typename T> struct is_modint : decltype(detail::check_value<T>(0)) {}; template <typename T> using is_modint_t = enable_if_t<is_modint<T>::value>; template <typename T> using is_not_modint_t = enable_if_t<!is_modint<T>::value>; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <class T, is_modint_t<T> * = nullptr> bool read_single(T &ref) { long long val = 0; bool f = read_single(val); ref = T(val); return f; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <class A, class B, class C> bool read_single(tuple<A, B, C> &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p))); } template <class A, class B, class C, class D> bool read_single(tuple<A, B, C, D> &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p)) && read_single(get<3>(p))); } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <class T, is_modint_t<T> * = nullptr> void write(T &ref) { write(ref.val); } template <class T> void write(const vector<T> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> &val) { write(val.first); write(' '); write(val.second); } template <class A, class B, class C> void write(const tuple<A, B, C> &val) { auto &[a, b, c] = val; write(a), write(' '), write(b), write(' '), write(c); } template <class A, class B, class C, class D> void write(const tuple<A, B, C, D> &val) { auto &[a, b, c, d] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d); } template <class A, class B, class C, class D, class E> void write(const tuple<A, B, C, D, E> &val) { auto &[a, b, c, d, e] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e); } template <class A, class B, class C, class D, class E, class F> void write(const tuple<A, B, C, D, E, F> &val) { auto &[a, b, c, d, e, f] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f); } template <class T, size_t S> void write(const array<T, S> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if(val < 0){ negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if(negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } constexpr bool is_directed() { return directed; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void resize(int n) { N = n; } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } void read_parent(int off = 1) { for (int v = 1; v < N; ++v) { INT(p); p -= off; add(p, v); } build(); } void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "library/graph/tree.hpp" // HLD euler tour をとっていろいろ。 // 木以外、非連結でも dfs 順序や親がとれる。 template <typename Graph> struct TREE { Graph &G; using Graph_type = Graph; using WT = typename Graph::cost_type; int N; bool hld; vector<int> LID, RID, head, V, parent, root; vc<int> depth; vc<WT> depth_weighted; vector<bool> in_tree; TREE(Graph &G, int r = -1, bool hld = 1) : G(G), N(G.N), hld(hld), LID(G.N), RID(G.N), head(G.N, r), V(G.N), parent(G.N, -1), root(G.N, -1), depth(G.N, -1), depth_weighted(G.N, 0), in_tree(G.M, 0) { assert(G.is_prepared()); int t1 = 0; if (r != -1) { dfs_sz(r, -1); dfs_hld(r, t1); } else { for (int r = 0; r < N; ++r) { if (parent[r] == -1) { head[r] = r; dfs_sz(r, -1); dfs_hld(r, t1); } } } for (auto &&v: V) root[v] = (parent[v] == -1 ? v : root[parent[v]]); } void dfs_sz(int v, int p) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; in_tree[e.id] = 1; depth_weighted[e.to] = depth_weighted[v] + e.cost; dfs_sz(e.to, v); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (!in_tree[e.id] || depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } /* k: 0-indexed */ int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int lca(int u, int v) { return LCA(u, v); } int la(int u, int v) { return LA(u, v); } int subtree_size(int v) { return RID[v] - LID[v]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist(int a, int b, bool weighted) { assert(weighted); int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k = 1) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } void debug() { print("V", V); print("LID", LID); print("RID", RID); print("parent", parent); print("depth", depth); print("head", head); print("in_tree(edge)", in_tree); print("root", root); } }; #line 2 "library/ds/unionfind.hpp" struct UnionFind { int n; int n_comp; std::vector<int> size, par; UnionFind(int n) : n(n), n_comp(n), size(n, 1), par(n) { std::iota(par.begin(), par.end(), 0); } int find(int x) { assert(0 <= x && x < n); while (par[x] != x) { par[x] = par[par[x]]; x = par[x]; } return x; } int operator[](int x) { return find(x); } bool merge(int x, int y) { x = find(x); y = find(y); if (x == y) { return false; } n_comp--; if (size[x] < size[y]) std::swap(x, y); size[x] += size[y]; size[y] = 0; par[y] = x; return true; } std::vector<int> find_all() { std::vector<int> A(n); for (int i = 0; i < n; ++i) A[i] = find(i); return A; } void reset() { n_comp = n; size.assign(n, 1); std::iota(par.begin(), par.end(), 0); } }; #line 3 "library/graph/functional.hpp" // N が根となる木を新たに作る template <typename T = int> struct FunctionalGraph { int N, M; vc<int> TO; vc<T> wt; vc<int> root; Graph<T, 1> G; FunctionalGraph() {} FunctionalGraph(int N) : N(N), M(0), TO(N, -1), wt(N), root(N, -1) {} void add(int a, int b, T c = 1) { assert(0 <= a && a < N); assert(TO[a] == -1); ++M; TO[a] = b; wt[a] = c; } TREE<Graph<T, 1>> build() { assert(N == M); UnionFind uf(N); FOR(v, N) if (!uf.merge(v, TO[v])) { root[v] = v; } FOR(v, N) if (root[v] == v) root[uf[v]] = v; FOR(v, N) root[v] = root[uf[v]]; G.resize(N + 1); FOR(v, N) { if (root[v] == v) G.add(N, v, wt[v]); else G.add(TO[v], v, wt[v]); } G.build(); TREE<Graph<T, 1>> tree(G, N); return tree; } // functional graph に向かって進む template <typename TREE> int jump(TREE& tree, int v, ll step) { int d = tree.depth[v]; if (step <= d - 1) return tree.jump(v, N, step); v = root[v]; step -= d - 1; int bottom = TO[v]; int c = tree.depth[bottom]; step %= c; if (step == 0) return v; return tree.jump(bottom, step - 1); } // functional graph に step 回進む template <typename TREE> vc<int> jump_all(TREE& tree, ll step) { auto& G = tree.G; vc<int> res(N, -1); // v の k 個先を res[w] に入れる vvc<pair<int, int>> query(N); FOR(v, N) { int d = tree.depth[v]; int r = root[v]; if (d - 1 > step) { query[v].eb(v, step); } if (d - 1 <= step) { ll k = step - (d - 1); int bottom = TO[r]; int c = tree.depth[bottom]; k %= c; if (k == 0) { res[v] = r; continue; } query[bottom].eb(v, k - 1); } } vc<int> path; auto dfs = [&](auto& dfs, int v) -> void { path.eb(v); for (auto&& [w, k]: query[v]) { res[w] = path[len(path) - 1 - k]; } for (auto&& e: G[v]) dfs(dfs, e.to); path.pop_back(); }; for (auto&& e: G[N]) { dfs(dfs, e.to); } return res; } }; #line 2 "library/mod/fast_div.hpp" struct fast_div { // Min25 https://judge.yosupo.jp/submission/46090 // 同じ定数で何度も除算するときの高速化に使える using i64 = long long; using u64 = unsigned long long; using u128 = __uint128_t; constexpr fast_div() : m(), s(), x() {} constexpr fast_div(int n) : m(n), s(std::__lg(n - 1)), x(((u128(1) << (s + 64)) + n - 1) / n) {} constexpr friend u64 operator/(u64 n, const fast_div& d) { return (u128(n) * d.x >> d.s) >> 64; } constexpr friend int operator%(u64 n, const fast_div& d) { return n - n / d * d.m; } constexpr std::pair<i64, int> divmod(u64 n) const { u64 q = n / *this; return {q, n - q * m}; } int m; int s; u64 x; }; #line 2 "library/mod/mod_inv.hpp" // long でも大丈夫 ll mod_inv(ll val, ll mod) { val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 2 "library/nt/primetest.hpp" struct m64 { using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; inline static u64 m, r, n2; // r * m = -1 (mod 1<<64), n2 = 1<<128 (mod m) static void set_mod(u64 m) { assert(m < (1ull << 62)); assert((m & 1) == 1); m64::m = m; n2 = -u128(m) % m; r = m; FOR(_, 5) r *= 2 - m * r; r = -r; assert(r * m == -1ull); } static u64 reduce(u128 b) { return (b + u128(u64(b) * r) * m) >> 64; } u64 x; m64() : x(0) {} m64(u64 x) : x(reduce(u128(x) * n2)){}; u64 val() const { u64 y = reduce(x); return y >= m ? y - m : y; } m64 &operator+=(m64 y) { x += y.x - (m << 1); x = (i64(x) < 0 ? x + (m << 1) : x); return *this; } m64 &operator-=(m64 y) { x -= y.x; x = (i64(x) < 0 ? x + (m << 1) : x); return *this; } m64 &operator*=(m64 y) { x = reduce(u128(x) * y.x); return *this; } m64 operator+(m64 y) const { return m64(*this) += y; } m64 operator-(m64 y) const { return m64(*this) -= y; } m64 operator*(m64 y) const { return m64(*this) *= y; } bool operator==(m64 y) const { return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x); } bool operator!=(m64 y) const { return not operator==(y); } m64 pow(u64 n) const { m64 y = 1, z = *this; for (; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; bool primetest(const uint64_t x) { using u64 = uint64_t; if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x - 1) >> __builtin_ctzll(x - 1); m64::set_mod(x); const m64 one(1), minus_one(x - 1); auto ok = [&](u64 a) { auto y = m64(a).pow(d); u64 t = d; while (y != one and y != minus_one and t != x - 1) y *= y, t <<= 1; if (y != minus_one and t % 2 == 0) return false; return true; }; if (x < (1ull << 32)) { for (u64 a: {2, 7, 61}) if (not ok(a)) return false; } else { for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (x <= a) return true; if (not ok(a)) return false; } } return true; } #line 3 "library/nt/factor.hpp" mt19937_64 rng_mt{random_device{}()}; ll rnd(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng_mt); } ll rho(ll n, ll c) { m64::set_mod(n); assert(n > 1); const m64 cc(c); auto f = [&](m64 x) { return x * x + cc; }; m64 x = 1, y = 2, z = 1, q = 1; ll g = 1; const ll m = 1LL << (__lg(n) / 5); // ? for (ll r = 1; g == 1; r <<= 1) { x = y; FOR(_, r) y = f(y); for (ll k = 0; k < r and g == 1; k += m) { z = y; FOR(_, min(m, r - k)) y = f(y), q *= x - y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x - z).val(), n); } while (g == 1); return g; } ll find_prime_factor(ll n) { assert(n > 1); if (primetest(n)) return n; FOR(_, 100) { ll m = rho(n, rnd(n)); if (primetest(m)) return m; n = m; } cerr << "failed" << endl; assert(false); return -1; } // ソートしてくれる vc<pair<ll, int>> factor(ll n) { assert(n >= 1); vc<pair<ll, int>> pf; FOR3(p, 2, 100) { if (p * p > n) break; if (n % p == 0) { ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } } while (n > 1) { ll p = find_prime_factor(n); ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } sort(all(pf)); return pf; } vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) { vc<pair<ll, int>> res; while (n > 1) { int p = lpf[n]; int e = 0; while (n % p == 0) { n /= p; ++e; } res.eb(p, e); } return res; } #line 5 "library/nt/crt.hpp" // new_mod = -1 の場合:lcm が i128 範囲なら // 解なしなら -1 を返す i128 CRT(vc<int> vals, vc<int> mods, int new_mod = -1, bool coprime = false) { int n = len(vals); if (!coprime) { unordered_map<ll, vc<pi>> MP; FOR(i, n) { for (auto&& [p, e]: factor(mods[i])) { int mod = 1; FOR(e) mod *= p; MP[p].eb(vals[i] % mod, mod); } } vc<int> xx, mm; for (auto&& [p, dat]: MP) { int mod = 1; int val = 0; for (auto&& [x, m]: dat) if (chmax(mod, m)) val = x; for (auto&& [x, m]: dat) if ((val - x) % m != 0) return -1; xx.eb(val); mm.eb(mod); } swap(vals, xx); swap(mods, mm); n = len(vals); } vc<int> cfs(n); FOR(i, n) { auto mod = fast_div(mods[i]); ll a = vals[i]; ll prod = 1; FOR(j, i) { a = (a + cfs[j] * (mods[i] - prod)) % mod; prod = prod * mods[j] % mod; } cfs[i] = mod_inv(prod, mods[i]) * a % mod; } i128 ret = 0; i128 prod = 1; FOR(i, n) { ret += prod * cfs[i]; prod *= mods[i]; if (new_mod != -1) { ret %= new_mod; prod %= new_mod; } } return ret; } #line 2 "library/mod/modint.hpp" template <int mod> struct modint { static constexpr bool is_modint = true; int val; constexpr modint(const ll val = 0) noexcept : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {} bool operator<(const modint &other) const { return val < other.val; } // To use std::map modint &operator+=(const modint &p) { if ((val += p.val) >= mod) val -= mod; return *this; } modint &operator-=(const modint &p) { if ((val += mod - p.val) >= mod) val -= mod; return *this; } modint &operator*=(const modint &p) { val = (int)(1LL * val * p.val % mod); return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-val); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } }; struct ArbitraryModInt { static constexpr bool is_modint = true; int val; ArbitraryModInt() : val(0) {} ArbitraryModInt(int64_t y) : val(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {} bool operator<(const ArbitraryModInt &other) const { return val < other.val; } // To use std::map<ArbitraryModInt, T> static int &get_mod() { static int mod = 0; return mod; } static void set_mod(int md) { get_mod() = md; } ArbitraryModInt &operator+=(const ArbitraryModInt &p) { if ((val += p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator-=(const ArbitraryModInt &p) { if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator*=(const ArbitraryModInt &p) { long long a = (long long)val * p.val; int xh = (int)(a >> 32), xl = (int)a, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod())); val = m; return *this; } ArbitraryModInt &operator/=(const ArbitraryModInt &p) { *this *= p.inverse(); return *this; } ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); } ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; } ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; } ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; } ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; } bool operator==(const ArbitraryModInt &p) const { return val == p.val; } bool operator!=(const ArbitraryModInt &p) const { return val != p.val; } ArbitraryModInt inverse() const { int a = val, b = get_mod(), u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return ArbitraryModInt(u); } ArbitraryModInt pow(int64_t n) const { ArbitraryModInt ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (int(dat.size()) <= n) { int k = dat.size(); auto q = (mod + k - 1) / k; int r = k * q - mod; dat.emplace_back(dat[r] * mint(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {1, 1}; assert(0 <= n); if (n >= mod) return 0; while (int(dat.size()) <= n) { int k = dat.size(); dat.emplace_back(dat[k - 1] * mint(k)); } return dat[n]; } template <typename mint> mint fact_inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {1, 1}; assert(0 <= n && n < mod); while (int(dat.size()) <= n) { int k = dat.size(); dat.emplace_back(dat[k - 1] * inv<mint>(k)); } return dat[n]; } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if (dense) return C_dense<mint>(n, k); if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k); k = min(k, n - k); mint x(1); FOR(i, k) { x *= mint(n - i); } x *= fact_inv<mint>(k); return x; } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d] (1-x) ^ {-n} の計算 template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } using modint107 = modint<1000000007>; using modint998 = modint<998244353>; using amint = ArbitraryModInt; #line 7 "main.cpp" using mint = modint107; void solve() { LL(N); auto get = [&]() -> pair<vvc<int>, vc<pair<int, int>>> { // サイクル // どのサイクル、何番目 vvc<int> C; vc<pair<int, int>> pos(N, {-1, -1}); VEC(ll, TO, N); for (auto&& x: TO) --x; FOR(r, N) { if (pos[r].fi != -1) continue; vc<int> cyc = {r}; while (1) { ll nxt = TO[cyc.back()]; if (nxt == r) break; cyc.eb(nxt); } FOR(j, len(cyc)) pos[cyc[j]] = {len(C), j}; C.eb(cyc); } return {C, pos}; }; auto [CA, posA] = get(); auto [CB, posB] = get(); /* ・サイクル番号1、サイクル番号2、mod gcd(len) 1, 2 */ using T = tuple<int, int, int>; map<T, vc<int>> MP; FOR(v, N) { auto [i1, j1] = posA[v]; auto [i2, j2] = posB[v]; ll n1 = len(CA[i1]); ll n2 = len(CB[i2]); ll g = gcd(n1, n2); ll x = (j1 - j2) % g; if (x < 0) x += g; T t = {i1, i2, x}; MP[t].eb(v); } mint ANS = 0; for (auto&& [key, I]: MP) { auto r = I[0]; // t=0 で (r,r) にいるとする。(v,v) にいる時刻 vi X; auto [i1, i2, ___] = key; ll n1 = len(CA[i1]); ll n2 = len(CB[i2]); ll s1 = posA[r].se; ll s2 = posB[r].se; for (auto&& v: I) { ll t1 = posA[v].se; ll t2 = posB[v].se; t1 -= s1; t2 -= s2; if (t1 < 0) t1 += n1; if (t2 < 0) t2 += n2; ll x = CRT({t1, t2}, {n1, n2}); X.eb(x); } X.eb(n1 / gcd(n1, n2) * n2); sort(all(X)); FOR(k, len(X) - 1) { mint dx = X[k + 1] - X[k]; ANS += (dx) * (dx - 1); } } ANS /= mint(2); print(ANS); } signed main() { cout << fixed << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }