結果

問題 No.2097 AND^k
ユーザー chro_96chro_96
提出日時 2022-10-21 20:58:14
言語 C
(gcc 12.3.0)
結果
TLE  
実行時間 -
コード長 4,596 bytes
コンパイル時間 311 ms
コンパイル使用メモリ 34,012 KB
実行使用メモリ 22,540 KB
最終ジャッジ日時 2024-07-01 05:52:47
合計ジャッジ時間 25,504 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 7 ms
15,716 KB
testcase_01 AC 6 ms
15,720 KB
testcase_02 AC 6 ms
15,724 KB
testcase_03 AC 7 ms
15,720 KB
testcase_04 AC 8 ms
15,848 KB
testcase_05 AC 6 ms
15,724 KB
testcase_06 AC 6 ms
15,852 KB
testcase_07 AC 7 ms
15,728 KB
testcase_08 AC 4,950 ms
15,856 KB
testcase_09 AC 2,642 ms
15,728 KB
testcase_10 TLE -
testcase_11 AC 2,429 ms
15,728 KB
testcase_12 AC 2,229 ms
15,720 KB
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>

long long mod_num = 998244353LL;
long long root = 3LL;
int length = 998244352;
long long inverse_root = 0LL;
long long inverse_l = 0LL;

long long power_mod (long long a, long long b, long long p) {
  long long ans = 0LL;
  
  a %= p;
  
  if (b <= 0LL) {
    return 1LL;
  }
  
  ans = power_mod(a, b/2LL, p);
  ans = (ans * ans) % p;
  if (b%2LL == 1LL) {
    ans = (ans * a) % p;
  }
  
  return ans;
}

void setup_ntt (int l) {
  int tmp_length = 2;
  
  while(tmp_length < 2*l) {
    tmp_length *= 2;
  }
  
  root = power_mod(root, length / tmp_length, mod_num);
  inverse_root = power_mod(root, mod_num-2LL, mod_num);
  inverse_l = power_mod((long long) tmp_length, mod_num-2LL, mod_num);
  length = tmp_length;
  
  return;
}

void ntt_2n_bit_inverse_rec (long long *a, long long root, int l) {
  long long next_root = (root*root)%mod_num;
  long long alpha = 1LL;
  
  if (l <= 1) {
    return;
  }
  
  for (int i = 0; i < l/2; i++) {
    a[i] = (a[i] + a[i+l/2]) % mod_num;
    a[i+l/2] = (a[i] + mod_num - ((2LL * a[i+l/2]) % mod_num)) % mod_num;
    a[i+l/2] = (alpha * a[i+l/2]) % mod_num;
    alpha = (alpha * root) % mod_num;
  }
  
  ntt_2n_bit_inverse_rec(a, next_root, l/2);
  ntt_2n_bit_inverse_rec(a+l/2, next_root, l/2);
  
  return;
}

void ntt_2n (long long *a, long long *work, long long root, int l) {
  for (int i = 0; i < l; i++) {
    work[i] = a[i];
  }
  
  ntt_2n_bit_inverse_rec(work, root, l);
  
  for (int i = 0; i < l; i++) {
    int j = 0;
    int b = l / 2;
    int rem = i;
    
    while (rem > 0) {
      j += b * (rem%2);
      b /= 2;
      rem /= 2;
    }
    
    a[j] = work[i];
  }
  
  return;
}

void conv_mod (long long *a1, long long *a2, long long *ans, long long *work1, long long *work2) {
  for(int i = 0; i < length; i++) {
    work1[i] = a1[i];
    work2[i] = a2[i];
  }
  
  ntt_2n(work1, ans, root, length);
  ntt_2n(work2, ans, root, length);
  
  for(int i = 0; i < length; i++) {
    ans[i] = (work1[i] * work2[i]) % mod_num;
  }
  
  ntt_2n(ans, work1, inverse_root, length);
  
  for(int i = 0; i < length; i++) {
    ans[i] = (ans[i] * inverse_l) % mod_num;
  }
  
  return;
}

void func (int m, int l, long long *ans, long long *work1, long long *work2, long long *work3, long long *work4, long long pow2n, long long *pow2, long long *fact, long long *invf) {
  long long pow = 1LL;
  
  if (m < 1) {
    ans[0] = 1LL;
    for (int i = 1; i < length; i++) {
      ans[i] = 0LL;
    }
    return;
  }
  
  func(m/2, l, ans, work1, work2, work3, work4, pow2n, pow2, fact, invf);
  
  for (int i = 0; i <= l; i++) {
    long long tmp = (ans[i]*invf[i])%mod_num;
    work1[i] = tmp;
    work2[i] = (tmp*pow)%mod_num;
    pow = (pow*pow2[m/2])%mod_num;
  }
  
  for (int i = l+1; i < length; i++) {
    work1[i] = 0LL;
    work2[i] = 0LL;
  }
  
  conv_mod(work1, work2, ans, work3, work4);
  
  for (int i = 0; i <= l; i++) {
    ans[i] *= fact[i];
    ans[i] %= mod_num;
  }
  for (int i = l+1; i < length; i++) {
    ans[i] = 0LL;
  }
  
  if (m%2 == 1) {
    pow = pow2[m-1];
    for (int i = 0; i <= l; i++) {
      work1[i] = (ans[i]*invf[i])%mod_num;
    }
    work2[0] = pow2n;
    for (int i = 1; i <= l; i++) {
      work2[i] = (pow*invf[i])%mod_num;
      pow = (pow*pow2[m-1])%mod_num;
    }
    for (int i = l+1; i < length; i++) {
      work1[i] = 0LL;
      work2[i] = 0LL;
    }
    conv_mod(work1, work2, ans, work3, work4);
    for (int i = 0; i <= l; i++) {
      ans[i] *= fact[i];
      ans[i] %= mod_num;
    }
    for (int i = l+1; i < length; i++) {
      ans[i] = 0LL;
    }
  }
  
  return;
}

int main () {
  int n = 0;
  int m = 0;
  int l = 0;
  
  int res = 0;
  
  long long ans[300000] = {};
  long long work[4][300000] = {};
  
  long long pow2n = 0LL;
  long long pow2[100001] = {};
  long long fact[100001] = {};
  long long invf[100001] = {};
    
  res = scanf("%d", &n);
  res = scanf("%d", &m);
  res = scanf("%d", &l);
  
  pow2n = power_mod(2LL, (long long)n, mod_num);

  pow2[0] = 1LL;
  for (int i = 0; i < m; i++) {
    pow2[i+1] = (pow2[i]*2LL)%mod_num;
  }
  
  fact[0] = 1LL;
  for (int i = 0; i < l; i++) {
    fact[i+1] = fact[i];
    fact[i+1] *= (long long) (i+1);
    fact[i+1] %= mod_num;
  }
  
  invf[l] = power_mod(fact[l], mod_num-2LL, mod_num);
  for (int i = l; i > 0; i--) {
    invf[i-1] = invf[i];
    invf[i-1] *= (long long)i;
    invf[i-1] %= mod_num;
  }
  
  setup_ntt(l+1);
  
  func(m, l, ans, work[0], work[1], work[2], work[3], pow2n, pow2, fact, invf);
  
  for (int i = 0; i < l; i++) {
    printf("%lld\n", ans[i+1]);
  }
  
  return 0;
}
0