結果

問題 No.2104 Multiply-Add
ユーザー kaikeykaikey
提出日時 2022-10-21 22:13:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 4,965 bytes
コンパイル時間 2,237 ms
コンパイル使用メモリ 209,884 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-01 06:50:06
合計ジャッジ時間 5,347 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 2 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 RE -
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 1 ms
6,940 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(10); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
	for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
	return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
	for (T& in : v) is >> in;
	return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
	F f;
	rec(F&& f_) : f(std::forward<F>(f_)) {}
	template <class... Args> auto operator()(Args &&... args) const {
		return f(*this, std::forward<Args>(args)...);
	}
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a >= limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
	lint from, to;
	lint cost;
	Edge() {

	}
	Edge(lint u, lint v, lint c) {
		cost = c;
		from = u;
		to = v;
	}
	bool operator<(const Edge& e) const {
		return cost < e.cost;
	}
};
struct WeightedEdge {
	lint to;
	lint cost;
	WeightedEdge(lint v, lint c) {
		to = v;
		cost = c;
	}
	bool operator<(const WeightedEdge& e) const {
		return cost < e.cost;
	}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<char, lint> vstr;
typedef pair<lint, Vl> valv;

int main() {
	lint A, B, C, D;
	cin >> A >> B >> C >> D;
	lint x = A, y = B;
	if (gcd(abs(A), abs(B)) != gcd(abs(C), abs(D))) cout << -1 << endk;
	else {
		V<plint> ans;
		while (abs(A) != abs(B)) {
			lint d = -1;
			if (abs(A) > abs(B)) {
				if (A < 0) d *= -1;
				if (B < 0) d *= -1;
				lint k = d * (abs(A) - 1) / abs(B);
				ans.push_back({ 1, k });
				A += k * B;
			}
			else {
				if (A < 0) d *= -1;
				if (B < 0) d *= -1;
				lint k = d * (abs(B) - 1) / abs(A);
				ans.push_back({ 2, k });
				B += k * A;
			}
		}
		if (A * C < 0) {
			lint d = -1;
			if (B < 0) {
				d *= -1;
			}
			if (A < 0) {
				d *= -1;
			}
			ans.push_back({ 1, 2 * d });
			A += 2 * d * B;
		}
		if (B * D < 0) {
			lint d = -1;
			if (B < 0) {
				d *= -1;
			}
			if (A < 0) {
				d *= -1;
			}
			ans.push_back({ 2, 2 * d });
			B += 2 * d * A;
		}
		V<plint> tmp;
		A = C, B = D;
		while (abs(A) != abs(B)) {
			lint d = -1;
			if (abs(A) > abs(B)) {
				if (A < 0) d *= -1;
				if (B < 0) d *= -1;
				lint k = d * (abs(A) - 1) / abs(B);
				tmp.push_back({ 1, k });
				A += k * B;
			}
			else {
				if (A < 0) d *= -1;
				if (B < 0) d *= -1;
				lint k = d * (abs(B) - 1) / abs(A);
				tmp.push_back({ 2, k });
				B += k * A;
			}
		}
		reverse(ALL(tmp));
		for (auto p : tmp) ans.push_back({ p.first, -p.second });
		cout << SZ(ans) << endk;
		REP(i, SZ(ans)) {
			cout << ans[i].first << " " << ans[i].second << endk;
			if (ans[i].first == 1) x += ans[i].second * y;
			else y += ans[i].second * x;
		}
	}
}
0