結果
問題 | No.720 行列のできるフィボナッチ数列道場 (2) |
ユーザー |
|
提出日時 | 2022-10-23 02:49:36 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,055 ms / 2,000 ms |
コード長 | 9,388 bytes |
コンパイル時間 | 3,363 ms |
コンパイル使用メモリ | 234,352 KB |
最終ジャッジ日時 | 2025-02-08 11:39:44 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
#include<bits/stdc++.h>using namespace std;#pragma GCC optimize("Ofast")#define rep(i,n) for(ll i=0;i<n;i++)#define repl(i,l,r) for(ll i=(l);i<(r);i++)#define per(i,n) for(ll i=(n)-1;i>=0;i--)#define perl(i,r,l) for(ll i=r-1;i>=l;i--)#define fi first#define se second#define pb push_back#define ins insert#define pqueue(x) priority_queue<x,vector<x>,greater<x>>#define all(x) (x).begin(),(x).end()#define CST(x) cout<<fixed<<setprecision(x)#define vtpl(x,y,z) vector<tuple<x,y,z>>#define rev(x) reverse(x);using ll=long long;using vl=vector<ll>;using vvl=vector<vector<ll>>;using pl=pair<ll,ll>;using vpl=vector<pl>;using vvpl=vector<vpl>;const ll MOD=1000000007;const ll MOD9=998244353;const int inf=1e9+10;const ll INF=4e18;const ll dy[9]={1,0,-1,0,1,1,-1,-1,0};const ll dx[9]={0,1,0,-1,1,-1,1,-1,0};template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}const int mod = MOD;const int max_n = 200005;struct mint {ll x; // typedef long long ll;mint(ll x=0):x((x%mod+mod)%mod){}mint operator-() const { return mint(-x);}mint& operator+=(const mint a) {if ((x += a.x) >= mod) x -= mod;return *this;}mint& operator-=(const mint a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}mint operator+(const mint a) const { return mint(*this) += a;}mint operator-(const mint a) const { return mint(*this) -= a;}mint operator*(const mint a) const { return mint(*this) *= a;}mint pow(ll t) const {if (!t) return 1;mint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}bool operator==(const mint &p) const { return x == p.x; }bool operator!=(const mint &p) const { return x != p.x; }// for prime modmint inv() const { return pow(mod-2);}mint& operator/=(const mint a) { return *this *= a.inv();}mint operator/(const mint a) const { return mint(*this) /= a;}};istream& operator>>(istream& is, mint& a) { return is >> a.x;}ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}using vm=vector<mint>;using vvm=vector<vm>;struct combination {vector<mint> fact, ifact;combination(int n):fact(n+1),ifact(n+1) {assert(n < mod);fact[0] = 1;for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;ifact[n] = fact[n].inv();for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;}mint operator()(int n, int k) {if (k < 0 || k > n) return 0;return fact[n]*ifact[k]*ifact[n-k];}}comb(max_n);namespace NTT {// int32型のmodが取れるFFT。auto c=NTT::mul(a,b,mod)で受け取り。TIME指定。// ChineseRemと組み合わせてlong longにもできるstd::vector<int> tmp;size_t sz = 1;inline int powMod(int n, int p, int m) {int res = 1;while (p) {if (p & 1) res = (ll)res * n % m;n = (ll)n * n % m;p >>= 1;}return (int)res;}inline int invMod(int n, int m) {return powMod(n, m - 2, m);}template <int Mod, int PrimitiveRoot>struct NTTPart {static std::vector<int> ntt(std::vector<int> a, bool inv = false) {size_t mask = sz - 1;size_t p = 0;for (size_t i = sz >> 1; i >= 1; i >>= 1) {auto& cur = (p & 1) ? tmp : a;auto& nex = (p & 1) ? a : tmp;int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);if (inv) e = invMod(e, Mod);int w = 1;for (size_t j = 0; j < sz; j += i) {for (size_t k = 0; k < i; ++k) {nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;}w = (ll)w * e % Mod;}++p;}if (p & 1) std::swap(a, tmp);if (inv) {int invSz = invMod(sz, Mod);for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;}return a;}static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {a = ntt(a);b = ntt(b);for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;a = ntt(a, true);return a;}};constexpr int M[] = {1224736769, 469762049, 167772161};constexpr int PR[] = {3, 3, 3};constexpr int NTT_CONVOLUTION_TIME = 3;/*X := max(a)*max(b)*max(|a|, |b|) のとき,NTT_CONVOLUTION_TIME <- 1: X < 1224736769 = 1.2*10^ 9 ~ 2^30NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7くらいまで)*/inline void garner(std::vector<int> *c, int mod) {if (NTT_CONVOLUTION_TIME == 1) {for(auto& x : c[0]) x %= mod;}else if (NTT_CONVOLUTION_TIME == 2) {const int r01 = invMod(M[0], M[1]);for (size_t i = 0; i < sz; ++i) {c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];if (c[1][i] < 0) c[1][i] += M[1];c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;}}else if (NTT_CONVOLUTION_TIME == 3) {const int R01 = invMod(M[0], M[1]);const int R02 = invMod(M[0], M[2]);const int R12 = invMod(M[1], M[2]);const int M01 = (ll)M[0] * M[1] % mod;for (size_t i = 0; i < sz; ++i) {c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];if (c[1][i] < 0) c[1][i] += M[1];c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];if (c[2][i] < 0) c[2][i] += M[2];c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;}}}std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {for (auto& x : a) x %= mod;for (auto& x : b) x %= mod;size_t m = a.size() + b.size() - 1;sz = 1;while (m > sz) sz <<= 1;tmp.resize(sz);a.resize(sz, 0);b.resize(sz, 0);std::vector<int> c[NTT_CONVOLUTION_TIME];if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);for (auto& v : c) v.resize(m);garner(c, mod);return c[0];}}; // !!! CHECK NTT_CONVOLUTION_TIME !!!vector<mint> BerlekampMassey(const vector<mint> &s) {const int N = (int)s.size();vector<mint> b, c;b.reserve(N + 1);c.reserve(N + 1);b.push_back(mint(1));c.push_back(mint(1));mint y = mint(1);for (int ed = 1; ed <= N; ed++) {int l = int(c.size()), m = int(b.size());mint x = 0;for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];b.emplace_back(mint(0));m++;if (x == mint(0)) continue;mint freq = x / y;if (l < m) {auto tmp = c;c.insert(begin(c), m - l, mint(0));for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];b = tmp;y = x;} else {for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];}}reverse(begin(c), end(c));return c;}template <typename mint>vector<mint> kitamasa(vector<mint> Q,vector<mint> a) {assert(!Q.empty() && Q[0] != 0);assert((int)a.size() >= int(Q.size()) - 1);vector<mint> P(Q.size()*2-2);for(ll i=0;i<Q.size()-1;i++){for(ll j=0;j<Q.size();j++){P[i+j]+=a[i]*Q[j];}}P.resize(Q.size() - 1);return P;}template<class T>struct bostan_mori {vector<T> p, q;bostan_mori(vector<T> &_p, vector<T> &_q) : p(_p), q(_q) {}void rever(vector<T> &f) const {int d = f.size();rep(i, d) if (i&1) f[i] = -f[i];}void even(vector<T> &f) const {int d = (f.size() + 1) >> 1;rep(i, d) f[i] = f[i<<1];f.resize(d);}void odd(vector<T> &f) const {int d = f.size() >> 1;rep(i, d) f[i] = f[i<<1|1];f.resize(d);}vector<T> convolution(vector<T> a,vector<T> b) const{ll n=a.size(),m=b.size();ll z=0,x=0;rep(i,n)if(a[i].x)z++;rep(j,m)if(b[j].x)x++;if(z*x<10000){vm c(n+m-1);vl na;rep(i,n)if(a[i].x)na.emplace_back(i);rep(j,m){if(b[j].x==0)continue;for(auto p:na){c[j+p]+=a[p]*b[j];}}return c;}vector<int> na(n),nb(m);rep(i,n)na[i]=a[i].x;rep(i,m)nb[i]=b[i].x;auto f=NTT::mul(na,nb,MOD);vector<T> c(n+m-1);rep(i,n+m-1)c[i]=f[i];return c;}T operator[] (ll n) const {vector<T> _p(p), _q(q), _q_rev(q);rever(_q_rev);for (; n; n >>= 1) {_p = convolution(move(_p), _q_rev);if (n&1) odd(_p);else even(_p);_q = convolution(move(_q), move(_q_rev));even(_q);_q_rev = _q; rever(_q_rev);}return _p[0] / _q[0];}};ll m;//https://nyaannyaan.github.io/library/fps/kitamasa.hpp//https://atcoder.jp/contests/tdpc/submissions/34362182//線形漸化式のprefixからn項目を復元できる。bostan_mori<mint> interpolation(vm a){vm p={0,1};vm q(m+3);q[0]+=1;q[1]-=1;q[2]-=1;q[m]-=1;q[m+1]+=1;q[m+2]+=1;return bostan_mori<mint>(p,q);}int main(){ll n;cin >> n>> m;ll base=8000;vm v(base);v[1]=1;for(ll i=2;i<base;i++)v[i]=v[i-1]+v[i-2];vm dp(base);rep(i,base){dp[i]+=v[i];if(i+m<base)dp[i+m]+=dp[i];}//rep(i,100)cout << dp[i] <<" ";cout << endl;//dp.resize(100);auto f=interpolation(dp);//rep(i,100)cout << f[i] <<" ";cout << endl;cout << f[n*m] << endl;}