結果

問題 No.720 行列のできるフィボナッチ数列道場 (2)
ユーザー fumofumofuni
提出日時 2022-10-23 02:49:36
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,055 ms / 2,000 ms
コード長 9,388 bytes
コンパイル時間 3,363 ms
コンパイル使用メモリ 234,352 KB
最終ジャッジ日時 2025-02-08 11:39:44
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#pragma GCC optimize("Ofast")
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={1,0,-1,0,1,1,-1,-1,0};
const ll dx[9]={0,1,0,-1,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const int mod = MOD;
const int max_n = 200005;
struct mint {
ll x; // typedef long long ll;
mint(ll x=0):x((x%mod+mod)%mod){}
mint operator-() const { return mint(-x);}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
mint operator+(const mint a) const { return mint(*this) += a;}
mint operator-(const mint a) const { return mint(*this) -= a;}
mint operator*(const mint a) const { return mint(*this) *= a;}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
bool operator==(const mint &p) const { return x == p.x; }
bool operator!=(const mint &p) const { return x != p.x; }
// for prime mod
mint inv() const { return pow(mod-2);}
mint& operator/=(const mint a) { return *this *= a.inv();}
mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
using vm=vector<mint>;
using vvm=vector<vm>;
struct combination {
vector<mint> fact, ifact;
combination(int n):fact(n+1),ifact(n+1) {
assert(n < mod);
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
ifact[n] = fact[n].inv();
for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
}
mint operator()(int n, int k) {
if (k < 0 || k > n) return 0;
return fact[n]*ifact[k]*ifact[n-k];
}
}comb(max_n);
namespace NTT {
// int32modFFTauto c=NTT::mul(a,b,mod)TIME
// ChineseRemlong long
std::vector<int> tmp;
size_t sz = 1;
inline int powMod(int n, int p, int m) {
int res = 1;
while (p) {
if (p & 1) res = (ll)res * n % m;
n = (ll)n * n % m;
p >>= 1;
}
return (int)res;
}
inline int invMod(int n, int m) {
return powMod(n, m - 2, m);
}
template <int Mod, int PrimitiveRoot>
struct NTTPart {
static std::vector<int> ntt(std::vector<int> a, bool inv = false) {
size_t mask = sz - 1;
size_t p = 0;
for (size_t i = sz >> 1; i >= 1; i >>= 1) {
auto& cur = (p & 1) ? tmp : a;
auto& nex = (p & 1) ? a : tmp;
int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
if (inv) e = invMod(e, Mod);
int w = 1;
for (size_t j = 0; j < sz; j += i) {
for (size_t k = 0; k < i; ++k) {
nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;
}
w = (ll)w * e % Mod;
}
++p;
}
if (p & 1) std::swap(a, tmp);
if (inv) {
int invSz = invMod(sz, Mod);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;
}
return a;
}
static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
a = ntt(a);
b = ntt(b);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;
a = ntt(a, true);
return a;
}
};
constexpr int M[] = {1224736769, 469762049, 167772161};
constexpr int PR[] = {3, 3, 3};
constexpr int NTT_CONVOLUTION_TIME = 3;
/*
X := max(a)*max(b)*max(|a|, |b|) ,
NTT_CONVOLUTION_TIME <- 1: X < 1224736769 = 1.2*10^ 9 ~ 2^30
NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59
NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7)
*/
inline void garner(std::vector<int> *c, int mod) {
if (NTT_CONVOLUTION_TIME == 1) {
for(auto& x : c[0]) x %= mod;
}
else if (NTT_CONVOLUTION_TIME == 2) {
const int r01 = invMod(M[0], M[1]);
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;
}
}
else if (NTT_CONVOLUTION_TIME == 3) {
const int R01 = invMod(M[0], M[1]);
const int R02 = invMod(M[0], M[2]);
const int R12 = invMod(M[1], M[2]);
const int M01 = (ll)M[0] * M[1] % mod;
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];
if (c[2][i] < 0) c[2][i] += M[2];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;
}
}
}
std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
std::vector<int> c[NTT_CONVOLUTION_TIME];
if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);
for (auto& v : c) v.resize(m);
garner(c, mod);
return c[0];
}
}; // !!! CHECK NTT_CONVOLUTION_TIME !!!
vector<mint> BerlekampMassey(const vector<mint> &s) {
const int N = (int)s.size();
vector<mint> b, c;
b.reserve(N + 1);
c.reserve(N + 1);
b.push_back(mint(1));
c.push_back(mint(1));
mint y = mint(1);
for (int ed = 1; ed <= N; ed++) {
int l = int(c.size()), m = int(b.size());
mint x = 0;
for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
b.emplace_back(mint(0));
m++;
if (x == mint(0)) continue;
mint freq = x / y;
if (l < m) {
auto tmp = c;
c.insert(begin(c), m - l, mint(0));
for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
b = tmp;
y = x;
} else {
for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
}
}
reverse(begin(c), end(c));
return c;
}
template <typename mint>
vector<mint> kitamasa(vector<mint> Q,vector<mint> a) {
assert(!Q.empty() && Q[0] != 0);
assert((int)a.size() >= int(Q.size()) - 1);
vector<mint> P(Q.size()*2-2);
for(ll i=0;i<Q.size()-1;i++){
for(ll j=0;j<Q.size();j++){
P[i+j]+=a[i]*Q[j];
}
}
P.resize(Q.size() - 1);
return P;
}
template<class T>
struct bostan_mori {
vector<T> p, q;
bostan_mori(vector<T> &_p, vector<T> &_q) : p(_p), q(_q) {}
void rever(vector<T> &f) const {
int d = f.size();
rep(i, d) if (i&1) f[i] = -f[i];
}
void even(vector<T> &f) const {
int d = (f.size() + 1) >> 1;
rep(i, d) f[i] = f[i<<1];
f.resize(d);
}
void odd(vector<T> &f) const {
int d = f.size() >> 1;
rep(i, d) f[i] = f[i<<1|1];
f.resize(d);
}
vector<T> convolution(vector<T> a,vector<T> b) const{
ll n=a.size(),m=b.size();
ll z=0,x=0;
rep(i,n)if(a[i].x)z++;
rep(j,m)if(b[j].x)x++;
if(z*x<10000){
vm c(n+m-1);
vl na;rep(i,n)if(a[i].x)na.emplace_back(i);
rep(j,m){
if(b[j].x==0)continue;
for(auto p:na){
c[j+p]+=a[p]*b[j];
}
}
return c;
}
vector<int> na(n),nb(m);
rep(i,n)na[i]=a[i].x;
rep(i,m)nb[i]=b[i].x;
auto f=NTT::mul(na,nb,MOD);
vector<T> c(n+m-1);
rep(i,n+m-1)c[i]=f[i];
return c;
}
T operator[] (ll n) const {
vector<T> _p(p), _q(q), _q_rev(q);
rever(_q_rev);
for (; n; n >>= 1) {
_p = convolution(move(_p), _q_rev);
if (n&1) odd(_p);
else even(_p);
_q = convolution(move(_q), move(_q_rev));
even(_q);
_q_rev = _q; rever(_q_rev);
}
return _p[0] / _q[0];
}
};
ll m;
//https://nyaannyaan.github.io/library/fps/kitamasa.hpp
//https://atcoder.jp/contests/tdpc/submissions/34362182
//prefixn
bostan_mori<mint> interpolation(vm a){
vm p={0,1};
vm q(m+3);
q[0]+=1;q[1]-=1;q[2]-=1;
q[m]-=1;q[m+1]+=1;q[m+2]+=1;
return bostan_mori<mint>(p,q);
}
int main(){
ll n;cin >> n>> m;
ll base=8000;
vm v(base);v[1]=1;
for(ll i=2;i<base;i++)v[i]=v[i-1]+v[i-2];
vm dp(base);
rep(i,base){
dp[i]+=v[i];
if(i+m<base)dp[i+m]+=dp[i];
}
//rep(i,100)cout << dp[i] <<" ";cout << endl;
//dp.resize(100);
auto f=interpolation(dp);
//rep(i,100)cout << f[i] <<" ";cout << endl;
cout << f[n*m] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0