結果

問題 No.1781 LCM
ユーザー tko919tko919
提出日時 2022-10-24 02:33:07
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,786 bytes
コンパイル時間 2,362 ms
コンパイル使用メモリ 210,728 KB
実行使用メモリ 8,576 KB
最終ジャッジ日時 2024-07-02 13:02:52
合計ジャッジ時間 11,879 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 3 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 WA -
testcase_21 AC 1,316 ms
8,576 KB
testcase_22 AC 1,306 ms
8,448 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 1,310 ms
8,448 KB
testcase_26 AC 1,309 ms
8,576 KB
testcase_27 AC 1,294 ms
8,448 KB
testcase_28 AC 1,099 ms
7,936 KB
testcase_29 AC 274 ms
5,376 KB
testcase_30 AC 288 ms
5,376 KB
testcase_31 WA -
testcase_32 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(v) (v).begin(),(v).end()
using ll=long long int;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;
template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>

class FastIO{
    static constexpr int L=1<<16;
    char rdbuf[L];
    int rdLeft=0,rdRight=0;
    inline void reload(){
        int len=rdRight-rdLeft;
        memmove(rdbuf,rdbuf+rdLeft,len);
        rdLeft=0,rdRight=len;
        rdRight+=fread(rdbuf+len,1,L-len,stdin);
    }
    inline bool skip(){
        for(;;){
            while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;
            if(rdLeft==rdRight){
                reload();
                if(rdLeft==rdRight)return false;
            }
            else break;
        }
        return true;
    }
    template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){
        if(!skip())return false;
        if(rdLeft+20>=rdRight)reload();
        bool neg=false;
        if(rdbuf[rdLeft]=='-'){
            neg=true;
            rdLeft++;
        }
        x=0;
        while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
            x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
        }
        return true;
    }
    template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){
        if(!skip())return false;
        if(rdLeft+20>=rdRight)reload();
        bool neg=false;
        if(rdbuf[rdLeft]=='-'){
            neg=true;
            rdLeft++;
        }
        x=0;
        while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
            x=x*10+(rdbuf[rdLeft++]^48);
        }
        if(rdbuf[rdLeft]!='.')return true;
        rdLeft++;
        T base=.1;
        while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
            x+=base*(rdbuf[rdLeft++]^48);
            base*=.1;
        }
        if(neg)x=-x;
        return true;
    }
    inline bool _read(char& x){
        if(!skip())return false;
        if(rdLeft+1>=rdRight)reload();
        x=rdbuf[rdLeft++];
        return true;
    }
    inline bool _read(string& x){
        if(!skip())return false;
        for(;;){
            int pos=rdLeft;
            while(pos<rdRight and rdbuf[pos]>' ')pos++;
            x.append(rdbuf+rdLeft,pos-rdLeft);
            if(rdLeft==pos)break;
            rdLeft=pos;
            if(rdLeft==rdRight)reload();
            else break;
        }
        return true;
    }
    template<typename T>inline bool _read(vector<T>& v){
        for(auto& x:v){
            if(!_read(x))return false;
        }
        return true;
    }

    char wtbuf[L],tmp[50];
    int wtRight=0;
    inline void flush(){
        fwrite(wtbuf,1,wtRight,stdout);
        wtRight=0;
    }
    inline void _write(const char& x){
        if(wtRight>L-32)flush();
        wtbuf[wtRight++]=x;
    }
    inline void _write(const string& x){
        for(auto& c:x)_write(c);
    }
    template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){
        if(wtRight>L-32)flush();
        if(x==0){
            _write('0');
            return;
        }
        else if(x<0){
            _write('-');
            if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {
                switch (sizeof(x)) {
                case 2: _write("32768"); return;
                case 4: _write("2147483648"); return;
                case 8: _write("9223372036854775808"); return;
                }
            }
            x=-x;
        }
        int pos=0;
        while(x!=0){
            tmp[pos++]=char((x%10)|48);
            x/=10;
        }
        rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
        wtRight+=pos;
    }
    template<typename T>inline void _write(const vector<T>& v){
        rep(i,0,v.size()){
            if(i)_write(' ');
            _write(v[i]);
        }
    }
public:
    FastIO(){}
    ~FastIO(){flush();}
    inline void read(){}
    template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){
        assert(_read(head));
        read(tail...); 
    }
    template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}
    template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){
        if(space)_write(' ');
        _write(head);
        write<ln,true>(tail...); 
    }
};

/**
 * @brief Fast IO
 */
#line 3 "sol.cpp"

#line 2 "library/Math/sieve.hpp"

template<int L=1010101>vector<int> sieve(int N){
    bitset<L> isp;
    int n,sq=ceil(sqrt(N));
    for(int z=1;z<=5;z+=4){
        for(int y=z;y<=sq;y+=6){
            for(int x=1;x<=sq and (n=4*x*x+y*y)<=N;++x){
                isp[n].flip();
            }
            for(int x=y+1;x<=sq and (n=3*x*x-y*y)<=N;x+=2){
                isp[n].flip();
            }
        }
    }
    for(int z=2;z<=4;z+=2){
        for(int y=z;y<=sq;y+=6){
            for (int x=1;x<=sq and (n=3*x*x+y*y)<=N;x+=2){
                isp[n].flip();
            }
            for(int x=y+1;x<=sq and (n=3*x*x-y*y)<=N;x+=2){
                isp[n].flip();
            }
        }
    }
    for(int y=3;y<=sq;y+=6){
        for(int z=1;z<=2;++z){
            for(int x=z;x<=sq and (n=4*x*x+y*y)<=N;x+=3){
                isp[n].flip();
            }
        }
    }
    for(int n=5;n<=sq;++n)if(isp[n]){
        for(int k=n*n;k<=N;k+=n*n){
            isp[k]=false;
        }
    }
    isp[2]=isp[3]=true;

    vector<int> ret;
    for(int i=2;i<=N;i++)if(isp[i]){
        ret.push_back(i);
    }
    return ret;
}

/**
 * @brief Prime Sieve
 */
#line 3 "library/Math/multiplicative.hpp"

template<typename T,T (*pe)(int,int),T (*psum)(ll)>T MultiplicativeSum(ll N){
    ll SQ=sqrt(N)+1;
    auto ps=sieve(SQ);
    
    T ret=psum(N)+1;
    auto dfs=[&](auto& dfs,ll x,int i,int e,T cur,T pre)->void{
        T nxt=pre*pe(ps[i],e+1);
        ret+=cur*(psum(double(N)/x)-psum(ps[i]));
        ret+=nxt;
        ll L=sqrt(double(N)/x);
        if(ps[i]<=L)dfs(dfs,x*ps[i],i,e+1,nxt,pre);
        rep(j,i+1,ps.size()){
            if(ps[j]>L)break;
            dfs(dfs,x*ps[j],j,1,cur*pe(ps[j],1),cur);
        }
    };
    rep(i,0,ps.size())dfs(dfs,ps[i],i,1,pe(ps[i],1),1);
    return ret;
}

/**
 * @brief Multiplicative Sum
 * @docs docs/multiplicative.md
 */
#line 2 "library/Math/modint.hpp"

template<int mod=1000000007>struct fp {
    int v; static int get_mod(){return mod;}
    int inv() const{
        int tmp,a=v,b=mod,x=1,y=0;
        while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
        if(x<0){x+=mod;} return x;
    }
    fp(ll x=0){init(x%mod+mod);}
    fp& init(int x){v=(x<mod?x:x-mod); return *this;}
    fp operator-()const{return fp()-*this;}
    fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}
    fp& operator+=(const fp& x){return init(v+x.v);}
    fp& operator-=(const fp& x){return init(v+mod-x.v);}
    fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}
    fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}
    fp operator+(const fp& x)const{return fp(*this)+=x;}
    fp operator-(const fp& x)const{return fp(*this)-=x;}
    fp operator*(const fp& x)const{return fp(*this)*=x;}
    fp operator/(const fp& x)const{return fp(*this)/=x;}
    bool operator==(const fp& x)const{return v==x.v;}
    bool operator!=(const fp& x)const{return v!=x.v;}
    friend istream& operator>>(istream& is,fp& x){return is>>x.v;}
    friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}
};
template<typename T>struct factorial {
    vector<T> Fact,Finv,Inv;
    factorial(int maxx){
        Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx);
        Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1;
        rep(i,2,maxx){Fact[i]=Fact[i-1]*i;} Finv[maxx-1]=Fact[maxx-1].inv();
        for(int i=maxx-1;i>=2;i--){Finv[i-1]=Finv[i]*i; Inv[i]=Finv[i]*Fact[i-1];}
    }
    T fact(int n,bool inv=0){if(n<0)return 0; return (inv?Finv[n]:Fact[n]);}
    T inv(int n){if(n<0)return 0; return Inv[n];}
    T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(n-r,inv^1);}
    T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(r,inv^1)*fact(n-r,inv^1);}
    T nHr(int n,int r,bool inv=0){return nCr(n+r-1,r,inv);}
};

/**
 * @brief Modint
 */
#line 3 "library/Math/primecount.hpp"

template<typename T,T (*F)(ll)>struct PrimeSum{
    ll N,SQ;
    vector<T> lo,hi;
    PrimeSum(ll n=0):N(n),SQ(sqrt(N)+1),lo(SQ+1),hi(SQ+1){
        rep(i,1,SQ+1){
            lo[i]=F(i)-1;
            hi[i]=F(N/i)-1;
        }
        auto ps=sieve(SQ);
        for(auto& p:ps){
            ll q=ll(p)*p;
            if(q>N)break;
            T sub=lo[p-1],fp=lo[p]-lo[p-1];
            ll L=min(SQ,N/q),M=SQ/p;
            rep(i,1,M+1)hi[i]-=fp*(hi[i*p]-sub);
            rep(i,M+1,L+1)hi[i]-=fp*(lo[double(N)/(i*p)]-sub);
            for(int i=SQ;i>=q;i--)lo[i]-=fp*(lo[double(i)/p]-sub);
        }
    }
    T operator[](ll x) {
        return (x<=SQ?lo[x]:hi[N/x]);
    }
};

/**
 * @brief Prime Count
 * @docs docs/primecount.md
 */
#line 7 "sol.cpp"
ll F(ll x){return x;}
PrimeSum<ll,F> buf;

using Fp=fp<998244353>;
Fp memo[50];
Fp pe(int p,int e){return memo[e];}
Fp psum(ll x){return memo[1]*buf[x];}

FastIO io;
int main(){
    ll n,m;
    io.read(n,m);

    rep(e,0,45)memo[e]=Fp(e+1).pow(n);
    buf=PrimeSum<ll,F>(m);

    auto ret=MultiplicativeSum<Fp,pe,psum>(m);
    io.write(ret.v);
    return 0;
}
0