結果
問題 | No.1781 LCM |
ユーザー | tko919 |
提出日時 | 2022-10-24 02:36:00 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,393 ms / 5,000 ms |
コード長 | 9,785 bytes |
コンパイル時間 | 2,521 ms |
コンパイル使用メモリ | 211,588 KB |
実行使用メモリ | 8,576 KB |
最終ジャッジ日時 | 2024-11-15 22:24:01 |
合計ジャッジ時間 | 12,213 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,816 KB |
testcase_06 | AC | 3 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 3 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 3 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 1,379 ms
8,492 KB |
testcase_22 | AC | 1,393 ms
8,576 KB |
testcase_23 | AC | 2 ms
6,816 KB |
testcase_24 | AC | 2 ms
6,816 KB |
testcase_25 | AC | 1,393 ms
8,532 KB |
testcase_26 | AC | 1,386 ms
8,544 KB |
testcase_27 | AC | 1,379 ms
8,428 KB |
testcase_28 | AC | 1,165 ms
7,936 KB |
testcase_29 | AC | 288 ms
6,816 KB |
testcase_30 | AC | 305 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,820 KB |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define ALL(v) (v).begin(),(v).end() using ll=long long int; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} #line 2 "library/Utility/fastio.hpp" #include <unistd.h> class FastIO{ static constexpr int L=1<<16; char rdbuf[L]; int rdLeft=0,rdRight=0; inline void reload(){ int len=rdRight-rdLeft; memmove(rdbuf,rdbuf+rdLeft,len); rdLeft=0,rdRight=len; rdRight+=fread(rdbuf+len,1,L-len,stdin); } inline bool skip(){ for(;;){ while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++; if(rdLeft==rdRight){ reload(); if(rdLeft==rdRight)return false; } else break; } return true; } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } if(rdbuf[rdLeft]!='.')return true; rdLeft++; T base=.1; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x+=base*(rdbuf[rdLeft++]^48); base*=.1; } if(neg)x=-x; return true; } inline bool _read(char& x){ if(!skip())return false; if(rdLeft+1>=rdRight)reload(); x=rdbuf[rdLeft++]; return true; } inline bool _read(string& x){ if(!skip())return false; for(;;){ int pos=rdLeft; while(pos<rdRight and rdbuf[pos]>' ')pos++; x.append(rdbuf+rdLeft,pos-rdLeft); if(rdLeft==pos)break; rdLeft=pos; if(rdLeft==rdRight)reload(); else break; } return true; } template<typename T>inline bool _read(vector<T>& v){ for(auto& x:v){ if(!_read(x))return false; } return true; } char wtbuf[L],tmp[50]; int wtRight=0; inline void flush(){ fwrite(wtbuf,1,wtRight,stdout); wtRight=0; } inline void _write(const char& x){ if(wtRight>L-32)flush(); wtbuf[wtRight++]=x; } inline void _write(const string& x){ for(auto& c:x)_write(c); } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){ if(wtRight>L-32)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) { switch (sizeof(x)) { case 2: _write("32768"); return; case 4: _write("2147483648"); return; case 8: _write("9223372036854775808"); return; } } x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } template<typename T>inline void _write(const vector<T>& v){ rep(i,0,v.size()){ if(i)_write(' '); _write(v[i]); } } public: FastIO(){} ~FastIO(){flush();} inline void read(){} template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){ assert(_read(head)); read(tail...); } template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');} template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){ if(space)_write(' '); _write(head); write<ln,true>(tail...); } }; /** * @brief Fast IO */ #line 3 "sol.cpp" #line 2 "library/Math/sieve.hpp" template<int L=1010101>vector<int> sieve(int N){ bitset<L> isp; int n,sq=ceil(sqrt(N)); for(int z=1;z<=5;z+=4){ for(int y=z;y<=sq;y+=6){ for(int x=1;x<=sq and (n=4*x*x+y*y)<=N;++x){ isp[n].flip(); } for(int x=y+1;x<=sq and (n=3*x*x-y*y)<=N;x+=2){ isp[n].flip(); } } } for(int z=2;z<=4;z+=2){ for(int y=z;y<=sq;y+=6){ for (int x=1;x<=sq and (n=3*x*x+y*y)<=N;x+=2){ isp[n].flip(); } for(int x=y+1;x<=sq and (n=3*x*x-y*y)<=N;x+=2){ isp[n].flip(); } } } for(int y=3;y<=sq;y+=6){ for(int z=1;z<=2;++z){ for(int x=z;x<=sq and (n=4*x*x+y*y)<=N;x+=3){ isp[n].flip(); } } } for(int n=5;n<=sq;++n)if(isp[n]){ for(int k=n*n;k<=N;k+=n*n){ isp[k]=false; } } isp[2]=isp[3]=true; vector<int> ret; for(int i=2;i<=N;i++)if(isp[i]){ ret.push_back(i); } return ret; } /** * @brief Prime Sieve */ #line 3 "library/Math/multiplicative.hpp" template<typename T,T (*pe)(int,int),T (*psum)(ll)>T MultiplicativeSum(ll N){ ll SQ=sqrtl(N); auto ps=sieve(SQ); T ret=psum(N)+1; auto dfs=[&](auto& dfs,ll x,int i,int e,T cur,T pre)->void{ T nxt=pre*pe(ps[i],e+1); ret+=cur*(psum(double(N)/x)-psum(ps[i])); ret+=nxt; ll L=sqrtl(double(N)/x); if(ps[i]<=L)dfs(dfs,x*ps[i],i,e+1,nxt,pre); rep(j,i+1,ps.size()){ if(ps[j]>L)break; dfs(dfs,x*ps[j],j,1,cur*pe(ps[j],1),cur); } }; rep(i,0,ps.size())dfs(dfs,ps[i],i,1,pe(ps[i],1),1); return ret; } /** * @brief Multiplicative Sum * @docs docs/multiplicative.md */ #line 2 "library/Math/modint.hpp" template<int mod=1000000007>struct fp { int v; static int get_mod(){return mod;} int inv() const{ int tmp,a=v,b=mod,x=1,y=0; while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y); if(x<0){x+=mod;} return x; } fp(ll x=0){init(x%mod+mod);} fp& init(int x){v=(x<mod?x:x-mod); return *this;} fp operator-()const{return fp()-*this;} fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;} fp& operator+=(const fp& x){return init(v+x.v);} fp& operator-=(const fp& x){return init(v+mod-x.v);} fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;} fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;} fp operator+(const fp& x)const{return fp(*this)+=x;} fp operator-(const fp& x)const{return fp(*this)-=x;} fp operator*(const fp& x)const{return fp(*this)*=x;} fp operator/(const fp& x)const{return fp(*this)/=x;} bool operator==(const fp& x)const{return v==x.v;} bool operator!=(const fp& x)const{return v!=x.v;} friend istream& operator>>(istream& is,fp& x){return is>>x.v;} friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;} }; template<typename T>struct factorial { vector<T> Fact,Finv,Inv; factorial(int maxx){ Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx); Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1; rep(i,2,maxx){Fact[i]=Fact[i-1]*i;} Finv[maxx-1]=Fact[maxx-1].inv(); for(int i=maxx-1;i>=2;i--){Finv[i-1]=Finv[i]*i; Inv[i]=Finv[i]*Fact[i-1];} } T fact(int n,bool inv=0){if(n<0)return 0; return (inv?Finv[n]:Fact[n]);} T inv(int n){if(n<0)return 0; return Inv[n];} T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(n-r,inv^1);} T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(r,inv^1)*fact(n-r,inv^1);} T nHr(int n,int r,bool inv=0){return nCr(n+r-1,r,inv);} }; /** * @brief Modint */ #line 3 "library/Math/primecount.hpp" template<typename T,T (*F)(ll)>struct PrimeSum{ ll N,SQ; vector<T> lo,hi; PrimeSum(ll n=0):N(n),SQ(sqrtl(N)),lo(SQ+1),hi(SQ+1){ rep(i,1,SQ+1){ lo[i]=F(i)-1; hi[i]=F(N/i)-1; } auto ps=sieve(SQ); for(auto& p:ps){ ll q=ll(p)*p; if(q>N)break; T sub=lo[p-1],fp=lo[p]-lo[p-1]; ll L=min(SQ,N/q),M=SQ/p; rep(i,1,M+1)hi[i]-=fp*(hi[i*p]-sub); rep(i,M+1,L+1)hi[i]-=fp*(lo[double(N)/(i*p)]-sub); for(int i=SQ;i>=q;i--)lo[i]-=fp*(lo[double(i)/p]-sub); } } T operator[](ll x) { return (x<=SQ?lo[x]:hi[N/x]); } }; /** * @brief Prime Count * @docs docs/primecount.md */ #line 7 "sol.cpp" ll F(ll x){return x;} PrimeSum<ll,F> buf; using Fp=fp<998244353>; Fp memo[50]; Fp pe(int p,int e){return memo[e];} Fp psum(ll x){return memo[1]*buf[x];} FastIO io; int main(){ ll n,m; io.read(n,m); rep(e,0,45)memo[e]=Fp(e+1).pow(n); buf=PrimeSum<ll,F>(m); auto ret=MultiplicativeSum<Fp,pe,psum>(m); io.write(ret.v); return 0; }