結果
問題 | No.577 Prime Powerful Numbers |
ユーザー | heno239 |
提出日時 | 2022-10-26 18:52:03 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,142 bytes |
コンパイル時間 | 1,785 ms |
コンパイル使用メモリ | 152,040 KB |
実行使用メモリ | 26,024 KB |
最終ジャッジ日時 | 2024-07-04 07:37:10 |
合計ジャッジ時間 | 7,889 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
25,768 KB |
testcase_01 | AC | 136 ms
25,768 KB |
testcase_02 | AC | 44 ms
26,024 KB |
testcase_03 | AC | 396 ms
25,768 KB |
testcase_04 | AC | 44 ms
25,764 KB |
testcase_05 | AC | 1,986 ms
25,896 KB |
testcase_06 | AC | 132 ms
25,640 KB |
testcase_07 | TLE | - |
testcase_08 | AC | 303 ms
25,768 KB |
testcase_09 | AC | 359 ms
25,716 KB |
testcase_10 | AC | 44 ms
25,768 KB |
ソースコード
#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<bitset> #include<stack> #include<unordered_map> #include<unordered_set> #include<utility> #include<cassert> #include<complex> #include<numeric> #include<array> #include<chrono> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pair<int, int>P; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; template<typename T> void chmin(T& a, T b) { a = min(a, b); } template<typename T> void chmax(T& a, T b) { a = max(a, b); } template<typename T> void cinarray(vector<T>& v) { rep(i, v.size())cin >> v[i]; } template<typename T> void coutarray(vector<T>& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 21; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template<typename T> void addv(vector<T>& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector<int> ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template<typename T> auto prev_itr(set<T>& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template<typename T> auto next_itr(set<T>& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair<modint, modint>; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- const int mn = 4000005; bool isp[mn]; vector<int> ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } } ll safety_multi(ll x, ll y, ll mod) { ll ret = x * y - mod * (ul)(1.L / mod * x * y); return ret + mod * (ret < 0) - mod * (ret >= mod); } ll safety_mod_pow(ll x, ll n, ll mod) { x %= mod; ll res = 1; while (n) { if (n & 1)res = safety_multi(res, x, mod); n >>= 1; if (n == 0)break; x = safety_multi(x, x, mod); } return res; } //https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%9500000 bool prime_test(ll p) { if (p == 1)return false; if (p < mn)return isp[p]; if (p % 2 == 0)return false; int s = 0; ll d = p - 1; while (d % 2 == 0) { s++; d /= 2; } uniform_int_distribution<long long> ud(1, p - 1); rep(_, 10) { ll a = ud(mt); ll v = safety_mod_pow(a, d, p); if (v != 1) { bool exi = false; rep(i, s) { if (v == p - 1) { exi = true; break; } if (i + 1 < s) { v = safety_multi(v, v, p); } } if (!exi)return false; } } return true; } bool isok(ll x) { if (prime_test(x))return true; ll k = sqrt(x); while (k * k < x)k++; while (k * k > x)k--; if (k * k == x && prime_test(k))return true; k = pow(x, 1 / 3.0); while (k * k * k < x)k++; while (k * k * k > x)k--; if (k * k * k == x && prime_test(k))return true; for (int p : ps) { if ((ll)p * p * p * p > x)break; ll cur = 1; while (cur < x) { if (x / cur < p) { cur = x + 1; } else { cur *= p; } } if (cur == x)return true; } return false; } void solve() { ll n; cin >> n; if (n <= 3) { cout << "No\n"; return; } if (n % 2 == 0) { cout << "Yes\n"; return; } ll t = 2; while (t < n) { ll r = n - t; if (isok(r)) { cout << "Yes\n"; return; } t *= 2; } cout << "No\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); init(); //expr(); //while(true) int t; cin >> t; rep(i, t) solve(); return 0; }