結果

問題 No.577 Prime Powerful Numbers
ユーザー heno239heno239
提出日時 2022-10-26 19:00:48
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 7,219 bytes
コンパイル時間 1,903 ms
コンパイル使用メモリ 152,320 KB
実行使用メモリ 25,868 KB
最終ジャッジ日時 2024-07-04 07:45:12
合計ジャッジ時間 8,353 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 45 ms
25,768 KB
testcase_01 AC 140 ms
25,768 KB
testcase_02 AC 43 ms
25,728 KB
testcase_03 AC 423 ms
25,652 KB
testcase_04 AC 44 ms
25,768 KB
testcase_05 TLE -
testcase_06 AC 136 ms
25,764 KB
testcase_07 TLE -
testcase_08 AC 330 ms
25,768 KB
testcase_09 AC 374 ms
25,764 KB
testcase_10 AC 42 ms
25,764 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//constexpr ll mod = 998244353;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

template<typename T>
void chmin(T& a, T b) {
	a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
	a = max(a, b);
}
template<typename T>
void cinarray(vector<T>& v) {
	rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
	rep(i, v.size()) {
		if (i > 0)cout << " "; cout << v[i];
	}
	cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	//if (x == 0)return 0;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
//mod should be <2^31
struct modint {
	int n;
	modint() :n(0) { ; }
	modint(ll m) {
		if (m < 0 || mod <= m) {
			m %= mod; if (m < 0)m += mod;
		}
		n = m;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 21;
modint fact[max_n], factinv[max_n];
void init_f() {
	fact[0] = modint(1);
	for (int i = 0; i < max_n - 1; i++) {
		fact[i + 1] = fact[i] * modint(i + 1);
	}
	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
	for (int i = max_n - 2; i >= 0; i--) {
		factinv[i] = factinv[i + 1] * modint(i + 1);
	}
}
modint comb(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
	a = abs(a); b = abs(b);
	if (a < b)swap(a, b);
	while (b) {
		ll r = a % b; a = b; b = r;
	}
	return a;
}
using ld = long double;
//typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);
template<typename T>
void addv(vector<T>& v, int loc, T val) {
	if (loc >= v.size())v.resize(loc + 1, 0);
	v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
	fill(isp + 2, isp + mn, true);
	for (int i = 2; i < mn; i++) {
		if (!isp[i])continue;
		ps.push_back(i);
		for (int j = 2 * i; j < mn; j += i) {
			isp[j] = false;
		}
	}
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	if (res == st.begin())return st.end();
	res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
	return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
	a = a + b; return a;
}
mP operator-(mP a, mP b) {
	return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
	a = a - b; return a;
}
LP operator+(LP a, LP b) {
	return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
	a = a + b; return a;
}
LP operator-(LP a, LP b) {
	return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
	a = a - b; return a;
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
int dx[4] = { 1,0,-1,0 };
int dy[4] = { 0,1,0,-1 };
//-----------------------------------------

const int mn = 4000005;
bool isp[mn];
vector<int> ps;
void init() {
	fill(isp + 2, isp + mn, true);
	for (int i = 2; i < mn; i++) {
		if (!isp[i])continue;
		ps.push_back(i);
		for (int j = 2 * i; j < mn; j += i) {
			isp[j] = false;
		}
	}
}

// https://github.com/kth-competitive-programming/kactl/blob/main/content/number-theory/ModMulLL.h
ll safety_multi(ll x, ll y, ll mod) {
	ll ret = x * y - mod * (ul)(1.L / mod * x * y);
	return ret + mod * (ret < 0) - mod * (ret >= mod);
}
ll safety_mod_pow(ll x, ll n, ll mod) {
	x %= mod;
	ll res = 1;
	while (n) {
		if (n & 1)res = safety_multi(res, x, mod);
		n >>= 1; if (n == 0)break;
		x = safety_multi(x, x, mod);
	}
	return res;
}
//https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%9500000
bool prime_test(ll p) {
	if (p == 1)return false;
	if (p < mn)return isp[p];
	if (p % 2 == 0)return false;
	int s = 0; ll d = p - 1;
	while (d % 2 == 0) {
		s++; d /= 2;
	}
	uniform_int_distribution<long long> ud(1, p - 1);
	rep(_, 10) {
		ll a = ud(mt);
		if (safety_mod_pow(a, d, p) != 1) {
			bool exi = false;
			rep(i, s) {
				ll v = (1ll << i) * d;
				if (safety_mod_pow(a, v, p) == p - 1) {
					exi = true; break;
				}
			}
			if (!exi)return false;
		}
	}
	return true;
}


bool isok(ll x) {
	if (prime_test(x))return true;
	ll k = sqrt(x);
	while (k * k < x)k++;
	while (k * k > x)k--;
	if (k * k == x && prime_test(k))return true;
	k = pow(x, 1 / 3.0);
	while (k * k * k < x)k++;
	while (k * k * k > x)k--;
	if (k * k * k == x && prime_test(k))return true;
	for (int p : ps) {
		if ((ll)p * p * p * p > x)break;
		ll cur = 1;
		while (cur < x) {
			if (x / cur < p) {
				cur = x + 1;
			}
			else {
				cur *= p;
			}
		}
		if (cur == x)return true;
	}
	return false;
}
void solve() {
	ll n; cin >> n;
	if (n <= 3) {
		cout << "No\n"; return;
	}
	if (n % 2 == 0) {
		cout << "Yes\n"; return;
	}
	ll t = 2;
	while (t < n) {
		ll r = n - t;
		if (isok(r)) {
			cout << "Yes\n"; return;
		}
		t *= 2;
	}
	cout << "No\n";
}


signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed << setprecision(10);
	//init_f();
	init();
	//expr();
	//while(true)
	int t; cin >> t; rep(i, t)
	solve();
	return 0;
}

0